Mathematical modeling of an array of underground waste containers

被引:7
作者
Bourgeat, A [1 ]
Gipouloux, O
Marusic-Paloka, E
机构
[1] Univ Lyon 1, MCS ISTIL, Bat ISTIL,43 Bd 11 Novembre, F-69622 Villeurbanne, France
[2] Univ St Etienne, MCS Fac Sci, St Etienne 2, France
[3] Lab Mecan & Acoust, UPR 7051, F-13402 Marseille, France
[4] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
来源
COMPTES RENDUS MECANIQUE | 2002年 / 330卷 / 05期
关键词
computational solid mechanics; underground waste repository; global model; homogenization; boundary layers;
D O I
10.1016/S1631-0721(02)01472-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider a mathematical model describing the behavior of an underground waste repository, once the containers start to leak. Due to the high contrast of the characteristic lengths, numerical simulations on a such model are unrealistic. After renormalization, a small parameter epsilon appears, and the global model is obtained when tends to zero, by means of homogenization and boundary layers methods. The asymptotic model obtained could be used as a global repository model for large field numerical simulations.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 7 条
[1]   Mathematical modelling and numerical simulation of a non-Newtonian viscous flow through a thin filter [J].
Bourgeat, A ;
Gipouloux, O ;
Marusic-Paloka, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2001, 62 (02) :597-626
[2]  
BOURGEAT A, 2001, MATHAP0108214 LOS AL
[3]   HOMOGENIZATION IN OPEN SETS WITH HOLES [J].
CIORANESCU, D ;
PAULIN, JSJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (02) :590-607
[4]  
CONCA C, 1987, J MATH PURE APPL, V66, P1
[5]  
Lions JL., 1981, Some Methods in the Mathematical Analysis of Systems and their Control
[6]   ON THE BEHAVIOR AT INFINITY OF SOLUTIONS OF 2ND ORDER ELLIPTIC-EQUATIONS IN DOMAINS WITH NON-COMPACT BOUNDARY [J].
OLEINIK, OA ;
IOSIFJAN, GA .
MATHEMATICS OF THE USSR-SBORNIK, 1981, 40 (04) :527-548
[7]  
SANCHEZPALENCIA E, RES NOTES MATH, V70