Association rules in identification of spatial-temporal patterns in multiday activity diary data

被引:0
|
作者
Keuleers, B
Wets, G
Arentze, T
Timmermans, H
机构
[1] Univ Limburg, Data Anal & Modelling Grp, Fac Appl Econ Sci, B-3590 Diepenbeek, Belgium
[2] Eindhoven Univ Technol, Urban Planning Grp, NL-5600 MB Eindhoven, Netherlands
来源
TRAVEL PATTERNS AND BEHAVIOR; EFFECTS OF COMMUNICATIONS TECHNOLOGY: PLANNING AND ADMINISTRATION | 2001年 / 1752期
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Activity-based analysis in transportation demand forecasting is one of the most promising approaches in current transportation modeling. Travel decisions are understood as the outcome of underlying scheduling activity, resulting in large-scale interviews generating a large amount of data. Traditional techniques have been shown to be inefficient in describing the dependencies between different attributes if data sets are too large. Associations between data set attributes are described by means of association rules. The discussion outlines the description of activity-based transportation data sets through association rules for identification of spatial-temporal patterns in multiday activity diary data.
引用
收藏
页码:32 / 37
页数:6
相关论文
共 50 条
  • [1] Mining time-series association rules from Western Pacific spatial-temporal data
    Ma, Weixuan
    Xue, Cunjin
    Zhou, Junqi
    35TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT (ISRSE35), 2014, 17
  • [2] Stationary and time-varying patterns in activity diary panel data: Explorative analysis with association rules
    Keuleers, Bertold
    Wets, Geert
    Timmermans, Harry
    Arentze, Theo
    Vanhoof, Koen
    Transportation Research Record, 2002, (1807) : 9 - 15
  • [3] Stationary and time-varying patterns in activity diary panel data - Explorative analysis with association rules
    Keuleers, B
    Wets, G
    Timmermans, H
    Arentze, T
    Vanhoof, K
    TRAVELER BEHAVIOR AND VALUES 2002: PLANNING AND ADMINISTRATION, 2002, (1807): : 9 - 15
  • [4] STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data
    Shi, Mingguang
    Cheng, Xudong
    Dai, Yulong
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 112
  • [5] Spatial-temporal Data Interpolation Based on Spatial-temporal Kriging Method
    Xu M.-L.
    Xing T.
    Han M.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (08): : 1681 - 1688
  • [6] On the discovery of spatial-temporal fluctuating patterns
    Shan-Yun Teng
    Cheng-Kuan Ou
    Kun-Ta Chuang
    International Journal of Data Science and Analytics, 2019, 8 : 57 - 75
  • [7] On the discovery of spatial-temporal fluctuating patterns
    Teng, Shan-Yun
    Ou, Cheng-Kuan
    Chuang, Kun-Ta
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 8 (01) : 57 - 75
  • [8] Spatial-temporal patterns and pedestrian simulation
    Hu, Nan
    Zhou, Suiping
    Wu, Zhongke
    Zhou, Mingquan
    Cho, Benjamin Eng Keong
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2010, 21 (3-4) : 387 - 399
  • [9] Spatial-temporal patterns in prokaryote genomes
    Hao, BL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2625 - 2630
  • [10] Spatial-temporal difference equations and their application in spatial-temporal data model especially for big data
    Zhu, Dingju
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (1-2) : 66 - 87