Optical soliton perturbation with spatio-temporal dispersion in parabolic and dual-power law media by semi-inverse variational principle

被引:31
作者
Bhrawy, A. H. [1 ,2 ]
Alshaery, A. A. [3 ]
Hilal, E. M. [3 ]
Khan, Kaisar R. [4 ]
Mahmood, Mohammad F. [5 ]
Biswas, Anjan [1 ,6 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[3] King Abdulaziz Univ, Fac Sci Girls, Dept Math, Jeddah 21413, Saudi Arabia
[4] SUNY Canton, Canino Sch Engn Technol, Canton, NY 13617 USA
[5] Howard Univ, Dept Math, Washington, DC 20059 USA
[6] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
来源
OPTIK | 2014年 / 125卷 / 17期
关键词
Solitons; Integrability; Semi-inverse variational principle; EQUATION; KERR; FIELD;
D O I
10.1016/j.ijleo.2014.04.024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper studies the perturbed optical solitons with parabolic and dual-power law nonlinearities in presence of spatio-temporal dispersion. The semi-inverse variational principle is applied to extract an analytical 1-soliton solution to the governing equation. There are constraint conditions that naturally fall out for the existence of these solitons. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:4945 / 4950
页数:6
相关论文
共 29 条
  • [21] Application of He's semi-inverse method to the nonlinear Schrodinger equation
    Ozis, Turgut
    Yidirim, Ahmet
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) : 1039 - 1042
  • [22] Optical Solitons in Photonic Nano Waveguides with an Improved Nonlinear Schrodinger's Equation
    Savescu, Michelle
    Khan, Kaisar R.
    Naruka, Preeti
    Jafari, Hossein
    Moraru, Luminita
    Biswas, Anjan
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (05) : 1182 - 1191
  • [23] Optical Soliton Perturbation with Improved Nonlinear Schrodinger's Equation in Nano Fibers
    Savescu, Michelle
    Khan, Kaisar R.
    Kohl, Russell W.
    Moraru, Luminita
    Yildirim, Ahmet
    Biswas, Anjan
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2013, 8 (02) : 208 - 220
  • [24] TEMPORAL SOLITONS OF MODIFIED COMPLEX GINZBURG LANDAU EQUATION
    Shwetanshumala, S.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 3 : 17 - 24
  • [25] Solving the breaking soliton equation by He's variational method
    Tao, Zhao-Ling
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) : 2395 - 2397
  • [26] A study of optical solitons with Kerr and power law nonlinearities by He's variational principle
    Topkara, Engin
    Milovic, Daniela
    Sarma, Amarendra K.
    Majid, Fayequa
    Biswas, Anjan
    [J]. JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2009, 4
  • [27] Wu Y, 2009, INT J NONLIN SCI NUM, V10, P1245
  • [28] OPTICAL SOLITONS IN MULTI-DIMENSIONS WITH SPATIO-TEMPORAL DISPERSION AND NON-KERR LAW NONLINEARITY
    Xu, Yanan
    Jovanoski, Zlatko
    Bouasla, Abdelaziz
    Triki, Houria
    Moraru, Luminita
    Biswas, Anjan
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2013, 22 (03)
  • [29] Zheng CB, 2009, INT J NONLIN SCI NUM, V10, P1369