Optical soliton perturbation with spatio-temporal dispersion in parabolic and dual-power law media by semi-inverse variational principle

被引:31
作者
Bhrawy, A. H. [1 ,2 ]
Alshaery, A. A. [3 ]
Hilal, E. M. [3 ]
Khan, Kaisar R. [4 ]
Mahmood, Mohammad F. [5 ]
Biswas, Anjan [1 ,6 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[3] King Abdulaziz Univ, Fac Sci Girls, Dept Math, Jeddah 21413, Saudi Arabia
[4] SUNY Canton, Canino Sch Engn Technol, Canton, NY 13617 USA
[5] Howard Univ, Dept Math, Washington, DC 20059 USA
[6] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
来源
OPTIK | 2014年 / 125卷 / 17期
关键词
Solitons; Integrability; Semi-inverse variational principle; EQUATION; KERR; FIELD;
D O I
10.1016/j.ijleo.2014.04.024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper studies the perturbed optical solitons with parabolic and dual-power law nonlinearities in presence of spatio-temporal dispersion. The semi-inverse variational principle is applied to extract an analytical 1-soliton solution to the governing equation. There are constraint conditions that naturally fall out for the existence of these solitons. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:4945 / 4950
页数:6
相关论文
共 29 条
[21]   Application of He's semi-inverse method to the nonlinear Schrodinger equation [J].
Ozis, Turgut ;
Yidirim, Ahmet .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :1039-1042
[22]   Optical Solitons in Photonic Nano Waveguides with an Improved Nonlinear Schrodinger's Equation [J].
Savescu, Michelle ;
Khan, Kaisar R. ;
Naruka, Preeti ;
Jafari, Hossein ;
Moraru, Luminita ;
Biswas, Anjan .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (05) :1182-1191
[23]   Optical Soliton Perturbation with Improved Nonlinear Schrodinger's Equation in Nano Fibers [J].
Savescu, Michelle ;
Khan, Kaisar R. ;
Kohl, Russell W. ;
Moraru, Luminita ;
Yildirim, Ahmet ;
Biswas, Anjan .
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2013, 8 (02) :208-220
[24]   TEMPORAL SOLITONS OF MODIFIED COMPLEX GINZBURG LANDAU EQUATION [J].
Shwetanshumala, S. .
PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 3 :17-24
[25]   Solving the breaking soliton equation by He's variational method [J].
Tao, Zhao-Ling .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) :2395-2397
[26]   A study of optical solitons with Kerr and power law nonlinearities by He's variational principle [J].
Topkara, Engin ;
Milovic, Daniela ;
Sarma, Amarendra K. ;
Majid, Fayequa ;
Biswas, Anjan .
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2009, 4
[27]  
Wu Y, 2009, INT J NONLIN SCI NUM, V10, P1245
[28]   OPTICAL SOLITONS IN MULTI-DIMENSIONS WITH SPATIO-TEMPORAL DISPERSION AND NON-KERR LAW NONLINEARITY [J].
Xu, Yanan ;
Jovanoski, Zlatko ;
Bouasla, Abdelaziz ;
Triki, Houria ;
Moraru, Luminita ;
Biswas, Anjan .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2013, 22 (03)
[29]  
Zheng CB, 2009, INT J NONLIN SCI NUM, V10, P1369