Concentrated Solution Model of Transport in All Vanadium Redox Flow Battery Membrane Separator

被引:30
作者
Gandomi, Yasser Ashraf [1 ]
Zawodzinski, T. A. [2 ,3 ]
Mench, M. M. [1 ,4 ]
机构
[1] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Electrochem Energy Storage & Convers Lab, Knoxville, TN 37996 USA
[2] Univ Tennessee, Chem & Biomol Engn Dept, Knoxville, TN 37996 USA
[3] Oak Ridge Natl Lab, Phys Chem Mat Grp, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA
来源
COMPUTATIONAL STUDIES ON BATTERY AND FUEL CELL MATERIALS | 2014年 / 61卷 / 13期
关键词
PERFORMANCE; CELL;
D O I
10.1149/06113.0023ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A model of transport across the ion-exchange membrane in allvanadium redox flow batteries has been proposed based on concentrated solution theory for species with high concentration. The model is based upon the Stefan-Maxwell multicomponent diffusion equation where the fluxes of the species including protons (H+), bisulfate (HSO4-), water (H2O) and the sulfonate functional groups (-SO3-) are fully coupled. The driving force for species transport has been modeled in terms of concentration and electrostatic potential gradients. The ionic transference numbers as well as water electro-osmosis drag coefficient has been calculated for different acid concentrations.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 21 条
[1]   Modelling the effects of oxygen evolution in the all-vanadium redox flow battery [J].
Al-Fetlawi, H. ;
Shah, A. A. ;
Walsh, F. C. .
ELECTROCHIMICA ACTA, 2010, 55 (09) :3192-3205
[2]   Non-isothermal modelling of the all-vanadium redox flow battery [J].
Al-Fetlawi, H. ;
Shah, A. A. ;
Walsh, F. C. .
ELECTROCHIMICA ACTA, 2009, 55 (01) :78-89
[3]   Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions [J].
Bazant, Martin Z. ;
Kilic, Mustafa Sabri ;
Storey, Brian D. ;
Ajdari, Armand .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2009, 152 (1-2) :48-88
[4]  
FULLER TF, 1992, SOLID POLYM ELECTROL
[5]   Assessing the Limits of Water Management using Asymmetric Micro-Porous Layer Configurations [J].
Gandomi, Yasser Ashraf ;
Mench, Matthew M. .
POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01) :1375-1382
[6]   A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane [J].
Knehr, K. W. ;
Agar, Ertan ;
Dennison, C. R. ;
Kalidindi, A. R. ;
Kumbur, E. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (09) :A1446-A1459
[7]   A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage [J].
Li, Liyu ;
Kim, Soowhan ;
Wang, Wei ;
Vijayakumar, M. ;
Nie, Zimin ;
Chen, Baowei ;
Zhang, Jianlu ;
Xia, Guanguang ;
Hu, Jianzhi ;
Graff, Gordon ;
Liu, Jun ;
Yang, Zhenguo .
ADVANCED ENERGY MATERIALS, 2011, 1 (03) :394-400
[8]   A coupled dynamical model of redox flow battery based on chemical reaction, fluid flow, and electrical circuit [J].
Li, Minghua ;
Hikihara, Takashi .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (07) :1741-1747
[9]   A three-dimensional model for negative half cell of the vanadium redox flow battery [J].
Ma, Xiangkun ;
Zhang, Huamin ;
Xing, Feng .
ELECTROCHIMICA ACTA, 2011, 58 :238-246
[10]   Simulation of the direct methanol fuel cell - II. Modeling and data analysis of transport and kinetic phenomena [J].
Meyers, JP ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (06) :A718-A728