Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis

被引:163
作者
Song, Yaling [1 ]
You, Jun [1 ]
Xiong, Lizhong [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
关键词
Phytohormone; ARF; Aux/IAA; Transgenic rice; OF-FUNCTION MUTATION; ARABIDOPSIS-THALIANA; TRANSCRIPTION FACTOR; GROWTH-RESPONSES; REGULATED GENES; EXPRESSION; PROTEINS; ENCODES; LAMINA; PHYTOHORMONE;
D O I
10.1007/s11103-009-9474-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aux/IAA and auxin response factor (ARF) are two important families that have been well recognized for their roles in auxin-mediated responses. Aux/IAA proteins are short-lived transcriptional regulators that mediate the auxin responses through interaction with ARF transcription factors. Although quite a few members of the Aux/IAA family have been functionally characterized in dicotyledonous plants such as Arabidopsis, but relatively limited information is available in important crops such as rice. This work focused on isolation and characterization of a member of Aux/IAA family in rice named OsIAA1. The results indicated that OsIAA1 was constitutively expressed in all the tissues and organs investigated. The expression of this gene was induced by various phytohormones including IAA, 2,4-D, kinetin, 24-epibrassinolide, and jasmonic acid. Over-expression of OsIAA1 in rice resulted in reduced inhibition of root elongation to auxin treatment, but increased sensitivity to 24-epiBL treatment. In addition, the OsIAA1-overexpression transgenic plants showed distinctive morphological changes such as decreased plant height and loose plant architecture. Protein interaction analysis suggested that OsIAA1 may act through interaction with OsARF1. T-DNA insertion mutant of OsARF1 showed reduced sensitivity to BR treatment, resembling the phenotype of OsIAA1-overexpression plants. In addition, expression patterns of some genes responsive to brassinosteroid and auxin were changed in the OsIAA1-overexpression plants. These data suggested that OsIAA1 may play important roles in the cross-talk of auxin and brassinosteroid signaling pathways and plant morphogenesis.
引用
收藏
页码:297 / 309
页数:13
相关论文
共 62 条
[1]   Early genes and auxin action [J].
Abel, S ;
Theologis, A .
PLANT PHYSIOLOGY, 1996, 111 (01) :9-17
[2]   EARLY AUXIN-INDUCED GENES ENCODE SHORT-LIVED NUCLEAR PROTEINS [J].
ABEL, S ;
OELLER, PW ;
THEOLOGIS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (01) :326-330
[3]   Aux/IAA proteins are phosphorylated by phytochrome in vitro [J].
Colón-Carmona, A ;
Chen, DL ;
Yeh, KC ;
Abel, S .
PLANT PHYSIOLOGY, 2000, 124 (04) :1728-1738
[4]   Auxin action in a cell-free system [J].
Dharmasiri, N ;
Dharmasiri, S ;
Jones, AM ;
Estelle, M .
CURRENT BIOLOGY, 2003, 13 (16) :1418-1422
[5]   Auxin transport - shaping the plant [J].
Friml, J .
CURRENT OPINION IN PLANT BIOLOGY, 2003, 6 (01) :7-12
[6]   Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis [J].
Fukaki, H ;
Tameda, S ;
Masuda, H ;
Tasaka, M .
PLANT JOURNAL, 2002, 29 (02) :153-168
[7]   Microarray analysis of brassinosteroid-regulated genes in Arabidopsis [J].
Goda, H ;
Shimada, Y ;
Asami, T ;
Fujioka, S ;
Yoshida, S .
PLANT PHYSIOLOGY, 2002, 130 (03) :1319-1334
[8]   Comprehensive comparison brassinosteroid-regulated of auxin-regulated and brassinosteroid-regulated genes in arabidopsis [J].
Goda, H ;
Sawa, S ;
Asami, T ;
Fujioka, S ;
Shimada, Y ;
Yoshida, S .
PLANT PHYSIOLOGY, 2004, 134 (04) :1555-1573
[9]   Auxin-responsive gene expression: genes, promoters and regulatory factors [J].
Hagen, G ;
Guilfoyle, T .
PLANT MOLECULAR BIOLOGY, 2002, 49 (3-4) :373-385
[10]   Plant hormones: The interplay of brassinosteroids and auxin [J].
Halliday, KJ .
CURRENT BIOLOGY, 2004, 14 (23) :R1008-R1010