Current advances in ligand-based target prediction

被引:24
作者
Yang, Su-Qing [1 ]
Ye, Qing [2 ]
Ding, Jun-Jie [3 ]
Ming-Zhu Yin [4 ]
Lu, Ai-Ping [5 ]
Chen, Xiang [4 ]
Hou, Ting-Jun [2 ]
Cao, Dong-Sheng [1 ,5 ]
机构
[1] Cent South Univ, Xiangya Sch Pharmaceut Sci, Changsha 410013, Hunan, Peoples R China
[2] Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China
[3] Beijing Inst Pharmaceut Chem, Beijing, Peoples R China
[4] Cent South Univ, Hunan Engn Res Ctr Skin Hlth & Dis, Hunan Key Lab Skin Canc & Psoriasis, Dept Dermatol,Xiangya Hosp, Changsha 410008, Hunan, Peoples R China
[5] Hong Kong Baptist Univ, Sch Chinese Med, Inst Adv Translat Med Bone & Joint Dis, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
algorithm stacking; machine learning; proteochemometrics; similarity searching; target prediction; LARGE-SCALE PREDICTION; FINGERPRINT SIMILARITY SEARCH; WEB SERVER; DRUG DISCOVERY; MACROMOLECULAR TARGETS; PROTEIN SEQUENCES; MULTITARGET-QSAR; NATURAL-PRODUCTS; IDENTIFICATION; DATABASE;
D O I
10.1002/wcms.1504
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Target identification for bioactive molecules augments modern drug discovery efforts in a range of applications, from the elaboration of mode-of-action of drugs to the drug repurposing to even the knowledge of side-effects and further optimization. However, the traditional labor-intensive and time-consuming experiment methods obstructed the development. Driven by massive bioactivity data deposited in chemogenomic databases, computational alternatives have been proposed and widely developed to expedite the validation process. By screening a compound against a protein database, it is possible to identify potential target candidates that fit with this specific compound for subsequent experimental validation. In particular, ligand-based target prediction methods have made tremendous progress in the past decade due to their flexibility, relatively low computational cost, and remarkable predictive performance, and are still moving forward. In this review, we present a comprehensive overview of ligand-based target prediction methods including similarity searching, machine learning and algorithm stacking, and the strategies to validate these methods. We also discuss the strength and weakness of the existing data sources for model development and outline the challenges and prospects of ligand-based target prediction. It is expected that the topic discussed in this review should guide the development and application of ligand-based target prediction and be of interest to the audiences for wider scientific community. This article is categorized under: Data Science > Chemoinformatics
引用
收藏
页数:21
相关论文
共 162 条
  • [61] Jenkins JL., 2006, DRUG DISCOV TODAY, V3, P413, DOI [DOI 10.1016/J.DDTEC.2006.12.008, 10.1016/j.ddtec.2006.12.008, 10.1016/j.ddtec.2006.12.008. 5.2, DOI 10.1016/J.DDTEC.2006.12.008.5.2]
  • [62] Johnson M.A., 1990, M 196 1988 LOS ANG C, V6th
  • [63] KEGG: new perspectives on genomes, pathways, diseases and drugs
    Kanehisa, Minoru
    Furumichi, Miho
    Tanabe, Mao
    Sato, Yoko
    Morishima, Kanae
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D353 - D361
  • [64] Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines
    Kawai, Kentaro
    Fujishima, Satoshi
    Takahashi, Yoshimasa
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2008, 48 (06) : 1152 - 1160
  • [65] Relating protein pharmacology by ligand chemistry
    Keiser, Michael J.
    Roth, Bryan L.
    Armbruster, Blaine N.
    Ernsberger, Paul
    Irwin, John J.
    Shoichet, Brian K.
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (02) : 197 - 206
  • [66] Predicting new molecular targets for known drugs
    Keiser, Michael J.
    Setola, Vincent
    Irwin, John J.
    Laggner, Christian
    Abbas, Atheir I.
    Hufeisen, Sandra J.
    Jensen, Niels H.
    Kuijer, Michael B.
    Matos, Roberto C.
    Tran, Thuy B.
    Whaley, Ryan
    Glennon, Richard A.
    Hert, Jerome
    Thomas, Kelan L. H.
    Edwards, Douglas D.
    Shoichet, Brian K.
    Roth, Bryan L.
    [J]. NATURE, 2009, 462 (7270) : 175 - U48
  • [67] ReverseScreen3D: A Structure-Based Ligand Matching Method To identify Protein Targets
    Kinnings, Sarah L.
    Jackson, Richard M.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (03) : 624 - 634
  • [68] Query Chem: a Google-powered Web search combining text and chemical structures
    Klekota, Justin
    Roth, Frederick P.
    Schreiber, Stuart L.
    [J]. BIOINFORMATICS, 2006, 22 (13) : 1670 - 1673
  • [69] Open Targets: a platform for therapeutic target identification and validation
    Koscielny, Gautier
    An, Peter
    Carvalho-Silva, Denise
    Cham, Jennifer A.
    Fumis, Luca
    Gasparyan, Rippa
    Hasan, Samiul
    Karamanis, Nikiforos
    Maguire, Michael
    Papa, Eliseo
    Pierleoni, Andrea
    Pignatelli, Miguel
    Platt, Theo
    Rowland, Francis
    Wankar, Priyanka
    Bento, A. Patricia
    Burdett, Tony
    Fabregat, Antonio
    Forbes, Simon
    Gaulton, Anna
    Gonzalez, Cristina Yenyxe
    Hermjakob, Henning
    Hersey, Anne
    Jupe, Steven
    Kafkas, Senay
    Keays, Maria
    Leroy, Catherine
    Lopez, Francisco-Javier
    Magarinos, Maria Paula
    Malone, James
    McEntyre, Johanna
    Fuentes, Alfonso Munoz-Pomer
    O'Donovan, Claire
    Papatheodorou, Irene
    Parkinson, Helen
    Palka, Barbara
    Paschall, Justin
    Petryszak, Robert
    Pratanwanich, Naruemon
    Sarntivijal, Sirarat
    Saunders, Gary
    Sidiropoulos, Konstantinos
    Smith, Thomas
    Sondka, Zbyslaw
    Stegle, Oliver
    Tang, Amy
    Turner, Edward
    Vaughan, Brendan
    Vrousgou, Olga
    Watkins, Xavier
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D985 - D994
  • [70] In Silico Target Predictions: Defining a Benchmarking Data Set and Comparison of Performance of the Multiclass Naive Bayes and Parzen-Rosenblatt Window
    Koutsoukas, Alexios
    Lowe, Robert
    KalantarMotamedi, Yasaman
    Mussa, Hamse Y.
    Klaffke, Werner
    Mitchell, John B. O.
    Glen, Robert C.
    Bender, Andreas
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (08) : 1957 - 1966