Oblique dual frames and shift-invariant spaces

被引:159
作者
Christensen, O
Eldar, YC
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
[2] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
frames for subspaces; oblique dual frame; shift-invariant spaces;
D O I
10.1016/j.acha.2003.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a frame for a subspace W of a Hilbert space H, we consider a class of oblique dual frame sequences. These dual frame sequences are not constrained to lie in W. Our main focus is on shift-invariant frame sequences of the form {phi((.) - k)}(kis an element ofZ) in subspaces of L-2(R); for such frame sequences we are able to characterize the set of shift-invariant oblique dual Bessel sequences. Given frame sequences {phi((.) - k)}(kis an element ofZ) and {phi(1)((.) - k)}(kis an element ofZ), we present an easily verifiable condition implying that span{phi(1)((.) - k)}(kis an element ofZ) contains a generator for a shift-invariant dual of {phi((.) - k)}(kis an element ofZ); in particular, the exact statement of this result implies the somewhat surprising fact that there is a unique conventional dual frame that is shift-invariant. As an application of our results we consider frame sequences generated by B-splines, and show how to construct oblique duals with prescribed regularity. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:48 / 68
页数:21
相关论文
共 19 条
[1]   Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces [J].
Aldroubi, A .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (02) :151-161
[2]  
Benedetto J. J., 1993, WAVELETS MATH APPL, P97
[3]   The theory of multiresolution analysis frames and applications to filter banks [J].
Benedetto, JJ ;
Li, SD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (04) :389-427
[4]  
Christensen O, 1999, APPL COMPUT HARMON A, V7, P292, DOI 10.1006/acha.1998.0271
[5]   Perturbation of frames for a subspace of a Hilbert space [J].
Christensen, O ;
Lennard, C ;
Lewis, C .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (04) :1237-1249
[6]  
Christensen O., 2003, An Introduction to Frames and Riesz Bases, DOI DOI 10.1007/978-0-8176-8224-8
[7]   APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :787-806
[8]   Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors [J].
Eldar, YC .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (01) :77-96
[9]  
ELDAR YC, 2003, SAMPLING WAVELETS TO
[10]  
ELDAR YC, 2003, UNPUB GEN FRAMEWORK