Entire solutions of sublinear elliptic equations in anisotropic media

被引:14
作者
Dinu, Teodora-Liliana [1 ]
机构
[1] Fratii Buzesti Coll, Dept Math, Craiova 200352, Romania
关键词
sublinear elliptic equation; entire solution; maximum principle; anisotropic potential; Kato class;
D O I
10.1016/j.jmaa.2005.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear elliptic problem -Delta u = rho(x)f(u) in R-N (N >= 3), lim(vertical bar x vertical bar ->infinity) u(x) = l, where l >= 0 is a real number, rho(x) is a nonnegative potential belonging to a certain Kato class, and f (u) has a sublinear growth. We distinguish the cases l > 0 and l = 0 and prove existence and uniqueness results if the potential p(x) decays fast enough at infinity. Our arguments rely on comparison techniques and on a theorem of Brezis and Oswald for sublinear elliptic equations. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:382 / 392
页数:11
相关论文
共 22 条
[1]   BROWNIAN-MOTION AND HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS [J].
AIZENMAN, M ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (02) :209-273
[2]  
Badiale M., 1996, FUNKC EKVACIOJ-SER I, V39, P183
[3]   THE ASYMPTOTIC-BEHAVIOR OF THE SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
BANDLE, C ;
POZIO, MA ;
TESEI, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (02) :487-501
[4]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[5]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[6]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[7]  
CIRSTEA F, 1999, J MATH ANAL APPL, V229, P417
[8]   Entire solutions of the nonlinear eigenvalue logistic problem with sign-changing potential and absorption [J].
Dinu, TL .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (03) :311-321
[9]   SCALAR CURVATURE AND WARPED PRODUCTS OF RIEMANN MANIFOLDS [J].
DOBARRO, F ;
DOZO, EL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (01) :161-168
[10]   ASYMPTOTIC PROPERTIES OF SEMILINEAR EQUATIONS [J].
EDELSON, AL .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (01) :34-46