Mechanism-Based Post-Translational Modification and Inactivation in Terpene Synthases

被引:22
作者
Kersten, Roland D. [1 ]
Diedrich, Jolene K. [2 ,3 ]
Yates, John R., III [2 ,3 ]
Noel, Joseph P. [1 ]
机构
[1] Salk Inst Biol Studies, Jack H Skirball Ctr Chem Biol & Proteom, Howard Hughes Med Inst, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Physiol Chem, La Jolla, CA 92037 USA
[3] Salk Inst Biol Studies, Vincent J Coates Mass Spectrometry Ctr, La Jolla, CA 92037 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ARISTOLOCHENE SYNTHASE; SESQUITERPENE CYCLASE; BIOSYNTHESIS; CYCLIZATION; PATHWAYS; PRODUCTS; SEQUENCE; INSIGHTS; BINDING; VIEW;
D O I
10.1021/acschembio.5b00539
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Moreover, the level of cation-mediated inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs posessing relatively high product specificity. hi total, the result presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.
引用
收藏
页码:2501 / 2511
页数:11
相关论文
共 50 条
  • [41] A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP
    Poulard, Coralie
    Bittencourt, Danielle
    Wu, Dai-Ying
    Hu, Yixin
    Gerke, Daniel S.
    Stallcup, Michael R.
    [J]. EMBO REPORTS, 2017, 18 (08) : 1442 - 1459
  • [42] Enhancement of the Anti-Aggregation Activity of a Molecular Chaperone Using a Rationally Designed Post-Translational Modification
    Lindstedt, Philip R.
    Aprile, Francesco A.
    Matos, Maria J.
    Perni, Michele
    Bertoldo, Jean B.
    Bernardim, Barbara
    Peter, Quentin
    Jimenez-Oses, Gonzalo
    Knowles, Tuomas P. J.
    Dobson, Christopher M.
    Corzana, Francisco
    Vendruscolo, Michele
    Bernardes, Goncalo J. L.
    [J]. ACS CENTRAL SCIENCE, 2019, 5 (08) : 1417 - 1424
  • [43] Inhibitory protein-protein interactions of the SIRT1 deacetylase are choreographed by post-translational modification
    Krzysiak, Troy C.
    Choi, You-Jin
    Kim, Yong Joon
    Yang, Yunhan
    DeHaven, Christopher
    Thompson, Lariah
    Ponticelli, Ryan
    Mermigos, Mara M.
    Thomas, Laurel
    Marquez, Andrea
    Sipula, Ian
    Kemper, Jongsook Kim
    Jurczak, Michael
    Thomas, Gary
    Gronenborn, Angela M.
    [J]. PROTEIN SCIENCE, 2024, 33 (04)
  • [44] Post-translational Modification of Ribosomal Proteins STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RimO FROM THERMOTOGA MARITIMA, A RADICAL S-ADENOSYLMETHIONINE METHYLTHIOTRANSFERASE
    Arragain, Simon
    Garcia-Serres, Ricardo
    Blondin, Genevieve
    Douki, Thierry
    Clemancey, Martin
    Latour, Jean-Marc
    Forouhar, Farhad
    Neely, Helen
    Montelione, Gaetano T.
    Hunt, John F.
    Mulliez, Etienne
    Fontecave, Marc
    Atta, Mohamed
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (08) : 5792 - 5801
  • [45] Enhancing solanine production and antifungal activity by Streptomyces abikoensis XH-17 through combined ribosome engineering and post-translational modification
    Wu, Zichao
    Shao, Yuting
    Sedjoah, Rita-Cindy Aye-Ayire
    Wang, Mengxi
    Abdalmegeed, Dyaaaldin
    Zhang, Zhuyi
    Xin, Zhihong
    [J]. FOOD BIOSCIENCE, 2025, 63
  • [46] Accurate Models of Substrate Preferences of Post-Translational Modification Enzymes from a Combination of mRNA Display and Deep Learning
    Vinogradov, Alexander A.
    Chang, Jun Shi
    Onaka, Hiroyasu
    Goto, Yuki
    Suga, Hiroaki
    [J]. ACS CENTRAL SCIENCE, 2022, 8 (06) : 814 - 824
  • [47] Mechanism-based Inactivation by Aromatization of the Transaminase BioA Involved in Biotin Biosynthesis in Mycobaterium tuberculosis
    Shi, Ce
    Geders, Todd W.
    Park, Sae Woong
    Wilson, Daniel J.
    Boshoff, Helena I.
    Abayomi, Orishadipe
    Barry, Clifton E., III
    Schnappinger, Dirk
    Finzel, Barry C.
    Aldrich, Courtney C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (45) : 18194 - 18201
  • [48] Patterns of low temperature induced accumulation of dehydrins in Rosaceae crops-Evidence for post-translational modification in apple
    Haimi, Perttu
    Vinskiene, Jurgita
    Stepulaitiene, Inga
    Baniulis, Danas
    Staniene, Grazina
    Siksnianiene, Jurate Brone
    Rugienius, Rytis
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2017, 218 : 175 - 181
  • [49] Antibacterial activity and lantibiotic post-translational modification genes in Streptococcus spp. isolated from ruminal fluid
    Vieira Sabino, Yasmin Neves
    Fochat, Romario Costa
    Fernandes Lima, Junior Cesar
    Ribeiro, Marlice Teixeira
    Arcuri, Pedro Braga
    Carneiro, Jailton da Costa
    Machado, Marco Antonio
    Reis, Daniele Ribeiro de Lima
    Ferreira Machado, Alessandra Barbosa
    Hungaro, Humberto Moreira
    Ribeiro, Joao Batista
    Paiva, Aline Dias
    [J]. ANNALS OF MICROBIOLOGY, 2019, 69 (02) : 131 - 138
  • [50] Mechanism-Based Inactivation of Cytochrome P450 3A4 by Lapatinib
    Teng, Woon Chien
    Oh, Jing Wen
    New, Lee Sun
    Wahlin, Michelle D.
    Nelson, Sidney D.
    Ho, Han Kiat
    Chan, Eric Chun Yong
    [J]. MOLECULAR PHARMACOLOGY, 2010, 78 (04) : 693 - 703