Mechanism-Based Post-Translational Modification and Inactivation in Terpene Synthases

被引:22
|
作者
Kersten, Roland D. [1 ]
Diedrich, Jolene K. [2 ,3 ]
Yates, John R., III [2 ,3 ]
Noel, Joseph P. [1 ]
机构
[1] Salk Inst Biol Studies, Jack H Skirball Ctr Chem Biol & Proteom, Howard Hughes Med Inst, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Physiol Chem, La Jolla, CA 92037 USA
[3] Salk Inst Biol Studies, Vincent J Coates Mass Spectrometry Ctr, La Jolla, CA 92037 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ARISTOLOCHENE SYNTHASE; SESQUITERPENE CYCLASE; BIOSYNTHESIS; CYCLIZATION; PATHWAYS; PRODUCTS; SEQUENCE; INSIGHTS; BINDING; VIEW;
D O I
10.1021/acschembio.5b00539
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Moreover, the level of cation-mediated inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs posessing relatively high product specificity. hi total, the result presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.
引用
收藏
页码:2501 / 2511
页数:11
相关论文
共 50 条
  • [1] Post-translational modification by SUMO
    Hannoun, Zara
    Greenhough, Sebastian
    Jaffray, Ellis
    Hay, Ronald T.
    Hay, David C.
    TOXICOLOGY, 2010, 278 (03) : 288 - 293
  • [2] Protein Post-translational Modification in Prokaryotes
    Tan Yong-Cong
    Wang Qi-Jun
    Zhao Guo-Ping
    Yao Yu-Feng
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2011, 38 (03) : 197 - 203
  • [3] Allosteric post-translational modification codes
    Nussinov, Ruth
    Tsai, Chung-Jung
    Xin, Fuxiao
    Radivojac, Predrag
    TRENDS IN BIOCHEMICAL SCIENCES, 2012, 37 (10) : 447 - 455
  • [4] Post-translational Modification in Microviridin Biosynthesis
    Philmus, Benjamin
    Christiansen, Guntram
    Yoshida, Wesley Y.
    Hemscheidt, Thomas K.
    CHEMBIOCHEM, 2008, 9 (18) : 3066 - 3073
  • [5] Post-Translational Modification of WRKY Transcription Factors
    Zhou, Xiangui
    Lei, Zaojuan
    An, Pengtian
    PLANTS-BASEL, 2024, 13 (15):
  • [6] Adenylylation: renaissance of a forgotten post-translational modification
    Itzen, Aymelt
    Blankenfeldt, Wulf
    Goody, Roger S.
    TRENDS IN BIOCHEMICAL SCIENCES, 2011, 36 (04) : 219 - 226
  • [7] Review of Post-translational Modification of Human Serum Albumin
    Kannan, Surya
    Souchelnytskyi, Serhiy
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2022, 23 (02) : 114 - 120
  • [8] Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases
    Brennan, Damian F.
    Barford, David
    TRENDS IN BIOCHEMICAL SCIENCES, 2009, 34 (03) : 108 - 114
  • [9] Fluorescent multiplex analysis of carrier protein post-translational modification
    Mercer, AC
    La Clair, JJ
    Burkart, MD
    CHEMBIOCHEM, 2005, 6 (08) : 1335 - 1337
  • [10] Effect of a post-translational modification mimic on protein translocation through a nanopore
    Hoogerheide, David P.
    Gurnev, Philip A.
    Rostovtseva, Tatiana K.
    Bezrukov, Sergey M.
    NANOSCALE, 2020, 12 (20) : 11070 - 11078