Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy

被引:239
作者
Tang, Honglin [1 ,2 ]
Xu, Xiaojie [2 ]
Chen, Yuxuan [2 ]
Xin, Huhu [2 ]
Wan, Tao [2 ]
Li, Bowen [2 ]
Pan, Hongming [1 ]
Li, Da [1 ]
Ping, Yuan [2 ]
机构
[1] Zhejiang Univ, Dept Med Oncol, Sir Run Run Shaw Hosp, Sch Med, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
CRISPR; Cas9; gene delivery; immune checkpoint blockade; immunogenic cell death; nanomedicine; THERAPY;
D O I
10.1002/adma.202006003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A photothermal genome-editing strategy is described to improve immune checkpoint blockade (ICB) therapy by CRISPR/Cas9-mediated disruption of PD-L1 and mild-hyperthermia-induced activation of immunogenic cell death (ICD). This strategy relies on a supramolecular cationic gold nanorod that not only serves as a carrier to deliver CRISPR/Cas9 targeting PD-L1, but also harvests the second near-infrared-window (NIR-II) light and converts into mild hyperthermia to induce both ICD and gene expression of Cas9. The genomic disruption of PD-L1 significantly augments ICB therapy by improving the conversion of dendritic cells to T cells, followed by promoting the infiltration of cytotoxic T lymphocytes into tumors, thereby reprogramming immunosuppressive tumor microenvironment into immunoactive one. Such a therapeutic modality greatly inhibits the activity of primary and metastatic tumors and exhibits long-term immune memory effects against both rechallenged and recurrent tumors. The current therapeutic strategy for synergistic PD-L1 disruption and ICD activation represents an appealing way for cancer immunotherapy.
引用
收藏
页数:13
相关论文
共 21 条
[1]   CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity [J].
Burr, Marian L. ;
Sparbier, Christina E. ;
Chan, Yih-Chih ;
Williamson, James C. ;
Woods, Katherine ;
Beavis, Paul A. ;
Lam, Enid Y. N. ;
Henderson, Melissa A. ;
Bell, Charles C. ;
Stolzenburg, Sabine ;
Gilan, Omer ;
Bloor, Stuart ;
Noori, Tahereh ;
Morgens, David W. ;
Bassik, Michael C. ;
Neeson, Paul J. ;
Behren, Andreas ;
Darcy, Phillip K. ;
Dawson, Sarah-Jane ;
Voskoboinik, Ilia ;
Trapani, Joseph A. ;
Cebon, Jonathan ;
Lehner, Paul J. ;
Dawson, Mark A. .
NATURE, 2017, 549 (7670) :101-105
[2]   Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing [J].
Chen, Xiaohong ;
Chen, Yuxuan ;
Xin, Huhu ;
Wan, Tao ;
Ping, Yuan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (05) :2395-2405
[3]   Clinical Challenges of Immune Checkpoint Inhibitors [J].
de Miguel, Maria ;
Calvo, Emiliano .
CANCER CELL, 2020, 38 (03) :326-333
[4]   Binary Cooperative Prodrug Nanoparticles Improve Immunotherapy by Synergistically Modulating Immune Tumor Microenvironment [J].
Feng, Bing ;
Zhou, Fangyuan ;
Hou, Bo ;
Wang, Dangge ;
Wang, Tingting ;
Fu, Yuanlei ;
Ma, Yuting ;
Yu, Haijun ;
Li, Yaping .
ADVANCED MATERIALS, 2018, 30 (38)
[5]   Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies [J].
Gurbatri, Candice R. ;
Lia, Ioana ;
Vincent, Rosa ;
Coker, Courtney ;
Castro, Samuel ;
Treuting, Piper M. ;
Hinchliffe, Taylor E. ;
Arpaia, Nicholas ;
Danino, Tal .
SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (530)
[6]  
He X, 2020, CELL RES, V30, P660, DOI [10.1038/s41422-020-0343-4, 10.19678/j.issn.1000-3428.0058876]
[7]   Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model [J].
Iguchi, Yoshiya ;
Michiue, Hiroyuki ;
Kitamatsu, Mizuki ;
Hayashi, Yuri ;
Takenaka, Fumiaki ;
Nishiki, Tei-ichi ;
Matsui, Hideki .
BIOMATERIALS, 2015, 56 :10-17
[8]   A carrier-free multiplexed gene editing system applicable for suspension cells [J].
Ju, Anna ;
Lee, Sung Won ;
Lee, Young Eun ;
Han, Ki-Cheol ;
Kim, Jin-Chul ;
Shin, Sang Chul ;
Park, Hyun Jung ;
Kim, Eunice EunKyeong ;
Hong, Seokmann ;
Jang, Mihue .
BIOMATERIALS, 2019, 217
[9]   Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death [J].
Li, Wei ;
Yang, Jie ;
Luo, Lihua ;
Jiang, Mengshi ;
Qin, Bing ;
Yin, Hang ;
Zhu, Chunqi ;
Yuan, Xiaoling ;
Zhang, Junlei ;
Luo, Zhenyu ;
Du, Yongzhong ;
Li, Qingpo ;
Lou, Yan ;
Qiu, Yunqing ;
You, Ian .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy [J].
Liu, Qi ;
Wang, Chun ;
Zheng, Yadan ;
Zhao, Yu ;
Wang, Ying ;
Hao, Jialei ;
Zhao, Xinzhi ;
Yi, Kaikai ;
Shi, Linqi ;
Kang, Chunsheng ;
Liu, Yang .
BIOMATERIALS, 2020, 258