Stability of regular vortex polygons in Bose-Einstein condensate

被引:3
作者
Kilin, A. A. [1 ]
Artemova, E. M. [1 ]
机构
[1] Udmurt State Univ, Ural Math Ctr, Ul Univ Skaya 1, Izhevsk 426034, Russia
来源
IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA | 2020年 / 56卷
关键词
vortex dynamics; Thomson configurations; Bose-Einstein condensate; linear stability; POINT-VORTICES; MODEL; RING;
D O I
10.35634/2226-3594-2020-56-02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of the stability of rotating regular vortex N-gons (Thomson configurations) in a Bose-Einstein condensate in a harmonic trap. The dependence of the rotation velocity omega of the Thomson configuration around the center of the trap is obtained as a function of the number of vortices N and the radius of the configuration R. The analysis of the stability of motion of such configurations in the linear approximation is carried out. For N <= 6, regions of orbital stability of configurations in the parameter space are constructed. It is shown that vortex N-gons for N > 6 are unstable for any parameters of the system.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 22 条
[1]   POINT VORTEX MOTIONS WITH A CENTER OF SYMMETRY [J].
AREF, H .
PHYSICS OF FLUIDS, 1982, 25 (12) :2183-2187
[2]   Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere [J].
Boatto, S ;
Cabral, HE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :216-230
[3]  
BOGOMOLOV VA, 1979, IZV AN SSSR FIZ ATM+, V15, P243
[4]  
Borisov A. V., 2005, ARXIVNLIN0503068NLIN
[5]  
Borisov A. V., 2005, Mathematical methods in the dynamics of vortex structures
[6]   Stability and bifurcations for the N+1 vortex problem on the sphere [J].
Cabral, HE ;
Meyer, KR ;
Schmidt, DS .
REGULAR & CHAOTIC DYNAMICS, 2003, 8 (03) :259-282
[7]   Vortices in a trapped dilute Bose-Einstein condensate [J].
Fetter, AL ;
Svidzinsky, AA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (12) :R135-R194
[8]  
Havelock TH, 1931, PHILOS MAG, V11, P617
[9]   Dynamics of three noncorotating vortices in Bose-Einstein condensates [J].
Koukouloyannis, V. ;
Voyatzis, G. ;
Kevrekidis, P. G. .
PHYSICAL REVIEW E, 2014, 89 (04)
[10]  
Kurakin L. G., 2020, Russian Journal of Nonlinear Dynamics, V16, P3, DOI 10.20537/nd200101