Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.)

被引:39
|
作者
Shah, Smit [1 ]
Weinholdt, Claus [2 ]
Jedrusik, Nicole [1 ]
Molina, Carlos [1 ]
Zou, Jun [3 ]
Grosse, Ivo [2 ]
Schiessl, Sarah [4 ]
Jung, Christian [1 ]
Emrani, Nazgol [1 ]
机构
[1] Christian Albrechts Univ Kiel, Plant Breeding Inst, Olshausenstr 40, D-24098 Kiel, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Comp Sci, Halle, Saale, Germany
[3] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan, Hubei, Peoples R China
[4] Justus Liebig Univ, IFZ Res Ctr Biosyst Land Use & Nutr, Dept Plant Breeding, Giessen, Germany
关键词
association analysis; differentially expressed genes; genetic mapping; pleiotropic effects; RNA-seq; vernalization; yield; LOCUS-C; VERNALIZATION; EXPRESSION; GENOME; PROTEIN; QTL; FLC; ARCHITECTURE; HOMOLOGS; PATTERNS;
D O I
10.1111/pce.13353
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rapeseed (Brassica napus L.), one of the most important sources of vegetable oil and protein-rich meals worldwide, is adapted to different geographical regions by modification of flowering time. Rapeseed cultivars have different day length and vernalization requirements, which categorize them into winter, spring, and semiwinter ecotypes. To gain a deeper insight into genetic factors controlling floral transition in B.napus, we performed RNA sequencing (RNA-seq) in the semiwinter doubled haploid line, Ningyou7, at different developmental stages and temperature regimes. The expression profiles of more than 54,000 gene models were compared between different treatments and developmental stages, and the differentially expressed genes were considered as targets for association analysis and genetic mapping to confirm their role in floral transition. Consequently, 36 genes with association to flowering time, seed yield, or both were identified. We found novel indications for neofunctionalization in homologs of known flowering time regulators like VIN3 and FUL. Our study proved the potential of RNA-seq along with association analysis and genetic mapping to identify candidate genes for floral transition in rapeseed. The candidate genes identified in this study could be subjected to genetic modification or targeted mutagenesis and genotype building to breed rapeseed adapted to certain environments.
引用
收藏
页码:1935 / 1947
页数:13
相关论文
共 50 条
  • [1] Genetic and physical mapping of flowering time loci in canola (Brassica napus L.)
    Raman, Harsh
    Raman, Rosy
    Eckermann, Paul
    Coombes, Neil
    Manoli, Sahana
    Zou, Xiaoxiao
    Edwards, David
    Meng, Jinling
    Prangnell, Roslyn
    Stiller, Jiri
    Batley, Jacqueline
    Luckett, David
    Wratten, Neil
    Dennis, Elizabeth
    THEORETICAL AND APPLIED GENETICS, 2013, 126 (01) : 119 - 132
  • [2] A novel strategy to map a locus associated with flowering time in canola (Brassica napus L.)
    Long, Yunming
    Zheng, Puying
    Anderson, James V.
    Horvath, David P.
    Sthapit, Jinita
    Li, Xuehui
    Rahman, Mukhlesur
    Chao, Wun S.
    MOLECULAR GENETICS AND GENOMICS, 2024, 299 (01)
  • [3] Genetic analysis on oil content in rapeseed (Brassica napus L.)
    Wang, Xinfa
    Liu, Guihua
    Yang, Qing
    Hua, Wei
    Liu, Jing
    Wang, Hanzhong
    EUPHYTICA, 2010, 173 (01) : 17 - 24
  • [4] Identification and physical mapping of QTLs associated with flowering time in Brassica napus L.
    Yu, Kunjiang
    Wang, Xiaodong
    Li, Wenjing
    Sun, Lijie
    Peng, Qi
    Chen, Feng
    Zhang, Wei
    Guan, Rongzhan
    Zhang, Jiefu
    EUPHYTICA, 2019, 215 (10)
  • [5] Transcriptome Analysis Reveals Key Genes and Pathways Associated with the Regulation of Flowering Time in Cabbage (Brassica oleracea L. var. capitata)
    Wang, Jiao
    Zhang, Bin
    Guo, Huiling
    Chen, Li
    Han, Fengqing
    Yan, Chao
    Yang, Limei
    Zhuang, Mu
    Lv, Honghao
    Wang, Yong
    Ji, Jialei
    Zhang, Yangyong
    PLANTS-BASEL, 2023, 12 (19):
  • [6] Genetic dissection of flowering time and fine mapping of qFT.A02-1 in rapeseed (Brassica napus L.)
    Li, Yanling
    Li, Xin
    Du, Dezhi
    Ma, Qianru
    Zhao, Zhi
    Wang, Long
    Zhang, Yongshun
    Shi, Huiqin
    Zhao, Hongping
    Li, Huaxin
    Pei, Damei
    Zhao, Zhigang
    Tang, Guoyong
    Liu, Haidong
    Li, Haojie
    Xiao, Lu
    THEORETICAL AND APPLIED GENETICS, 2025, 138 (04)
  • [7] Genome-Wide Association Mapping Reveals the Genetic Control Underlying Branch Angle in Rapeseed (Brassica napus L.)
    Li, Hongge
    Zhang, Liping
    Hu, Jihong
    Zhang, Fugui
    Chen, Biyun
    Xu, Kun
    Gao, Guizhen
    Li, Hao
    Zhang, Tianyao
    Li, Zaiyun
    Wu, Xiaoming
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [8] Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed (Brassica napus L.)
    Ibrahim, Sani
    Ahmad, Nazir
    Kuang, Lieqiong
    Li, Keqi
    Tian, Ze
    Sadau, Salisu Bello
    Tajo, Sani Muhammad
    Wang, Xinfa
    Wang, Hanzhong
    Dun, Xiaoling
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [9] Whole-transcriptome sequencing reveals a vernalization-related ceRNA regulatory network in chinese cabbage (Brassica campestris L. ssp. pekinensis)
    Shi, Fengyan
    Xu, Hezi
    Liu, Chuanhong
    Tan, Chong
    Ren, Jie
    Ye, Xueling
    Feng, Hui
    Liu, Zhiyong
    BMC GENOMICS, 2021, 22 (01)
  • [10] Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L
    Jian, Hongju
    Zhang, Aoxiang
    Ma, Jinqi
    Wang, Tengyue
    Yang, Bo
    Shuang, Lan Shuan
    Liu, Min
    Li, Jiana
    Xu, Xinfu
    Paterson, Andrew H.
    Liu, Liezhao
    BMC GENOMICS, 2019, 20 (1)