Kneading theory analysis of the Duffing equation

被引:9
作者
Caneco, Acilina [1 ]
Gracio, Clara [2 ,3 ]
Rocha, J. Leonel [4 ]
机构
[1] Inst Super Engn Lisboa, DEETC, Math Unit, P-1959007 Lisbon, Portugal
[2] Univ Evora, Dept Math, P-7000671 Evora, Portugal
[3] CIMA UE, P-7000671 Evora, Portugal
[4] Inst Super Engn Lisboa, DEQ, Math Unit, P-1959007 Lisbon, Portugal
关键词
CHAOS SYNCHRONIZATION; OSCILLATORS; HIERARCHY; DYNAMICS;
D O I
10.1016/j.chaos.2009.03.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study the symmetry effect on the kneading theory for symmetric unimodal maps and for symmetric bimodal maps, We obtain some properties about the kneading determinant for these maps, that implies some simplifications in the usual formula to compute, explicitly, the topological entropy. As an application, we study the chaotic behaviour of the two-well Duffing equation with forcing. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1529 / 1538
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1918, ERZWUNGENE SCHWINGUN
[2]   Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2008, 35 (02) :420-422
[3]   A derivation of the fine structure constant from the exceptional Lie group hierarchy of the micro cosmos [J].
El Naschle, M. S. .
CHAOS SOLITONS & FRACTALS, 2008, 36 (04) :819-822
[4]   Complex dynamics in three-well duffing system with two external forcings [J].
Jing, Zhujun ;
Huang, Jicai ;
Deng, Jin .
CHAOS SOLITONS & FRACTALS, 2007, 33 (03) :795-812
[5]   Behavior of harmonics generated by a duffing type equation with a nonlinear damping.: Part I [J].
Khammari, H ;
Mira, C ;
Carcassés, JP .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10) :3181-3221
[6]  
Lampreia J.P. e., 1997, Port. Math. (N.S.), V54, P1
[7]  
MILNOR J, 1988, LECT NOTES MATH, V1342, P465
[8]   Bifurcation structures generated by the nonautonomous Duffing equation [J].
Mira, C ;
Touzani-Qriouet, M ;
Kawakami, H .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1363-1379
[9]   ENTROPY OF PIECEWISE MONOTONE MAPPINGS [J].
MISIUREWICZ, M ;
SZLENK, W .
STUDIA MATHEMATICA, 1980, 67 (01) :45-63
[10]   Chaos synchronization between single and double wells Duffing-Van der Pol oscillators using active control [J].
Njah, A. N. ;
Vincent, U. E. .
CHAOS SOLITONS & FRACTALS, 2008, 37 (05) :1356-1361