CELLULARITY OF CERTAIN QUANTUM ENDOMORPHISM ALGEBRAS

被引:7
作者
Andersen, Henning H. [1 ]
Lehrer, Gustav I. [2 ]
Zhang, Ruibin [3 ]
机构
[1] Aarhus Univ, QGM, Nat Videnskabelige Fak, Ny Munkegade Bygning 1530, DK-8000 Aarhus, Denmark
[2] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
[3] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
quantum invariants; cellular algebras; tilting modules; TILTING MODULES; TENSOR-PRODUCTS; LIE-ALGEBRAS; Q-ANALOG; ROOTS; REPRESENTATIONS; FORMULA;
D O I
10.2140/pjm.2015.279.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any ring (A) over tilde such that Z [q(+/- 1/2)] subset of (A) over tilde subset of Q(q(1/2)), let Delta((A) over tilde)(d) be an (A) over tilde -form of the Weyl module of highest weight d is an element of N of the quantised enveloping algebra U-(A) over tilde of sl(2). For suitable (A) over tilde, we exhibit for all positive integers r an explicit cellular structure for End U-(A) over tilde (Delta((A) over tilde) (d)(circle times r)). This algebra and its cellular structure are described in terms of certain Temperley-Lieb-like diagrams. We also prove general results that relate endomorphism algebras of specialisations to specialisations of the endomorphism algebras. When zeta is a root of unity of order bigger than d we consider the U-zeta-module structure of the specialisation Delta(zeta)(d)(circle times r) at q bar over right zeta of Delta((A) over tilde)(d)(circle times r). As an application of these results, we prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above is equivalent to knowledge of the weight multiplicities of the tilting modules for U-zeta (sl(2)). As an example, in the final section we independently recover the weight multiplicities of indecomposable tilting modules for U-zeta (sl(2)) from the decomposition numbers of the endomorphism algebras, which are known through cellular theory.
引用
收藏
页码:11 / 35
页数:25
相关论文
共 28 条
[1]  
Andersen H. H., 2008, ENDOMORPHISM A UNPUB
[2]   The strong linkage principle for quantum groups at roots of 1 [J].
Andersen, HH .
JOURNAL OF ALGEBRA, 2003, 260 (01) :2-15
[3]  
ANDERSEN HH, 1995, COMMUN MATH PHYS, V169, P563, DOI 10.1007/BF02099312
[4]  
ANDERSEN HH, 1992, J REINE ANGEW MATH, V427, P35
[5]   TENSOR-PRODUCTS OF QUANTIZED TILTING MODULES [J].
ANDERSEN, HH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :149-159
[6]  
Andersen T. S., 2012, THESIS AARHUS U
[7]  
[Anonymous], 1998, Enseign. Math.
[8]   Modular Littlewood-Richardson coefficients [J].
Brundan, J ;
Kleshchev, A .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (02) :287-320
[9]  
Chari V., 1994, GUIDE QUANTUM GROUPS
[10]   ON TILTING MODULES FOR ALGEBRAIC-GROUPS [J].
DONKIN, S .
MATHEMATISCHE ZEITSCHRIFT, 1993, 212 (01) :39-60