Any sequence of uniformly bounded N x N Hermitian Toeplitz matrices {H-N} is asymptotically equivalent to a certain sequence of NxN circulant matrices {C-N} derived from the Toeplitz matrices in the sense that parallel to H-N - C-N parallel to F = o(root N) as N -> infinity. This implies that certain collective behaviors of the eigenvalues of each Toeplitz matrix are reflected in those of the corresponding circulant matrix and supports the utilization of the computationally efficient fast Fourier transform ( instead of the Karhunen-Loeve transform) in applications like coding and filtering. In this paper, we study the asymptotic performance of the individual eigenvalue estimates. We show that the asymptotic equivalence of the circulant and Toeplitz matrices implies the individual asymptotic convergence of the eigenvalues for certain types of Toeplitz matrices. We also show that these estimates asymptotically approximate the largest and smallest eigenvalues for more general classes of Toeplitz matrices.
机构:
Univ New Brunswick, Dept Math, POB 4400, Fredericton, NB E3B 5A3, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada
Kucerovsky, Dan
Mousavand, Kaveh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada
Mousavand, Kaveh
Sarraf, Aydin
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada
机构:
Univ New Brunswick, Dept Math, POB 4400, Fredericton, NB E3B 5A3, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada
Kucerovsky, Dan
Mousavand, Kaveh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada
Mousavand, Kaveh
Sarraf, Aydin
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, CanadaUniv New Brunswick, Dept Comp Sci, POB 4400, Fredericton, NB E3B 5A3, Canada