On the Asymptotic Equivalence of Circulant and Toeplitz Matrices

被引:33
作者
Zhu, Zhihui [1 ]
Wakin, Michael B. [1 ]
机构
[1] Colorado Sch Mines, Dept Elect Engn & Comp Sci, Golden, CO 80401 USA
关键词
Szego's theorem; Toeplitz matrices; circulant matrices; asymptotic equivalence; Fourier analysis; eigenvalue estimates; EIGENVALUE DISTRIBUTION; COGNITIVE RADIO; SINGULAR-VALUES; SYSTEMS; PRECONDITIONER; THEOREMS;
D O I
10.1109/TIT.2017.2676808
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Any sequence of uniformly bounded N x N Hermitian Toeplitz matrices {H-N} is asymptotically equivalent to a certain sequence of NxN circulant matrices {C-N} derived from the Toeplitz matrices in the sense that parallel to H-N - C-N parallel to F = o(root N) as N -> infinity. This implies that certain collective behaviors of the eigenvalues of each Toeplitz matrix are reflected in those of the corresponding circulant matrix and supports the utilization of the computationally efficient fast Fourier transform ( instead of the Karhunen-Loeve transform) in applications like coding and filtering. In this paper, we study the asymptotic performance of the individual eigenvalue estimates. We show that the asymptotic equivalence of the circulant and Toeplitz matrices implies the individual asymptotic convergence of the eigenvalues for certain types of Toeplitz matrices. We also show that these estimates asymptotically approximate the largest and smallest eigenvalues for more general classes of Toeplitz matrices.
引用
收藏
页码:2975 / 2992
页数:18
相关论文
共 35 条
[11]   BOUNDS ON THE EXTREME EIGENVALUES OF POSITIVE-DEFINITE TOEPLITZ MATRICES [J].
DEMBO, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (02) :352-355
[12]   Asymptotic eigenvalue distribution of block toeplitz matrices and application to blind SIMO channel identification [J].
Gazzah, H ;
Regalia, PA ;
Delmas, JP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (03) :1243-1251
[13]  
GRAY RM, 1972, IEEE T INFORM THEORY, V18, P725, DOI 10.1109/TIT.1972.1054924
[14]   Toeplitz and Circulant Matrices: A Review [J].
Gray, Robert M. .
FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2006, 2 (03) :155-239
[15]  
Grenander U., 1958, TOEPLITZ FORMS THEIR, V321
[16]   Asymptotically Equivalent Sequences of Matrices and Hermitian Block Toeplitz Matrices With Continuous Symbols: Applications to MIMO Systems [J].
Gutierrez-Gutierrez, Jesus ;
Crespo, Pedro M. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (12) :5671-5680
[17]   Cognitive radio: Brain-empowered wireless communications [J].
Haykin, S .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2005, 23 (02) :201-220
[18]   INVERSES OF TOEPLITZ OPERATORS, INNOVATIONS, AND ORTHOGONAL POLYNOMIALS [J].
KAILATH, T ;
VIEIRA, A ;
MORF, M .
SIAM REVIEW, 1978, 20 (01) :106-119
[19]  
Korner, 1989, FOURIER ANAL
[20]   Computing a lower bound of the smallest eigenvalue of a symmetric positive-definite Toeplitz matrix [J].
Laudadio, Teresa ;
Mastronardi, Nicola ;
Van Barel, Marc .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (10) :4726-4731