Accelerating Chip Design With Machine Learning

被引:31
|
作者
Khailany, Brucek [1 ]
Ren, Haoxing [1 ]
Dai, Steve [2 ]
Godil, Saad [3 ]
Keller, Ben [2 ]
Kirby, Robert [4 ]
Klinefelter, Alicia [1 ]
Venkatesan, Rangharajan [1 ]
Zhang, Yanqing [1 ]
Catanzaro, Bryan [3 ]
Dally, William J. [5 ]
机构
[1] NVIDIA Corp, Santa Clara, CA 95051 USA
[2] NVIDIA Corp, ASIC & VLSI Res Grp, Santa Clara, CA USA
[3] NVIDIA Corp, Appl Deep Learning Res, Santa Clara, CA USA
[4] NVIDIA Corp, Appl Deep Learning Res Team, Santa Clara, CA USA
[5] NVIDIA Corp, Res, Santa Clara, CA USA
关键词
Chip scale packaging; Computational modeling; Task analysis; Logic gates; Training; Very large scale integration; Data models; Design Methodology; Integrated Circuits; Machine Learning; VLSI;
D O I
10.1109/MM.2020.3026231
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advancements in machine learning provide an opportunity to transform chip design workflows. We review recent research applying techniques such as deep convolutional neural networks and graph-based neural networks in the areas of automatic design space exploration, power analysis, VLSI physical design, and analog design. We also present a future vision of an AI-assisted automated chip design workflow to aid designer productivity and automate optimization tasks.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [11] Chip design with machine learning: a survey from algorithm perspective
    Wenkai He
    Xiaqing Li
    Xinkai Song
    Yifan Hao
    Rui Zhang
    Zidong Du
    Yunji Chen
    Science China Information Sciences, 2023, 66
  • [12] Chip design with machine learning: a survey from algorithm perspective
    He, Wenkai
    Li, Xiaqing
    Song, Xinkai
    Hao, Yifan
    Zhang, Rui
    Du, Zidong
    Chen, Yunji
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (11)
  • [13] Chip design with machine learning: a survey from algorithm perspective
    Wenkai HE
    Xiaqing LI
    Xinkai SONG
    Yifan HAO
    Rui ZHANG
    Zidong DU
    Yunji CHEN
    Science China(Information Sciences), 2023, 66 (11) : 69 - 99
  • [14] Accelerating Optimization Design of Bio-inspired Interlocking Structures with Machine Learning
    Ding, Zhongqiu
    Xiao, Hong
    Duan, Yugang
    Wang, Ben
    ACTA MECHANICA SOLIDA SINICA, 2023, 36 (06) : 783 - 793
  • [15] Accelerating Optimization Design of Bio-inspired Interlocking Structures with Machine Learning
    Zhongqiu Ding
    Hong Xiao
    Yugang Duan
    Ben Wang
    Acta Mechanica Solida Sinica, 2023, 36 : 783 - 793
  • [16] Accelerating Optimizing the Design of Carbon-based Electrocatalyst Via Machine Learning
    Yu, Zhuochen
    Huang, Weimin
    ELECTROANALYSIS, 2022, 34 (04) : 599 - 607
  • [17] Machine learning for accelerating the design process of double-double composite structures
    Zhang, Zilan
    Zhang, Zhizhou
    Di Caprio, Francesco
    Gu, Grace X.
    COMPOSITE STRUCTURES, 2022, 285
  • [18] Accelerating Containerized Machine Learning Workloads
    Tariq, Ali
    Cao, Lianjie
    Ahmed, Faraz
    Rozner, Eric
    Sharma, Puneet
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [19] Accelerating wavepacket propagation with machine learning
    Singh, Kanishka
    Lee, Ka Hei
    Pelaez, Daniel
    Bande, Annika
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (28) : 2360 - 2373
  • [20] Machine Learning is Accelerating Materials Research
    Zhang Q.
    Zheng Y.
    Sun K.
    Cailiao Daobao/Materials Reports, 2020, 34 (05): : 9001 - 9002