On a boundary-domain integral equation system for the Robin problem for the diffusion equation in non-homogeneous media

被引:1
作者
Fresneda-Portillo, Carlos [1 ]
机构
[1] Univ Loyola Andalucia, Dept Quantitat Methods, Seville, Spain
关键词
Robin problem; parametrix; boundary integral equations; potential operators; VARIABLE-COEFFICIENT; NUMERICAL-SOLUTION; MIXED BVP; NEUMANN;
D O I
10.1515/gmj-2022-2145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Robin problem for the diffusion equation in non-homogeneous media partial differential equation is reduced to a system of direct segregated parametrix-based Boundary-Domain Integral Equations (BDIEs). We use a parametrix different from the one applied by Chkadua, Mikhailov, Natroshvili. We prove the equivalence between the original BVP and the corresponding BDIE system. The invertibility and Fredholm properties of the boundary-domain integral operators are also analysed.
引用
收藏
页码:363 / 372
页数:10
相关论文
共 50 条
  • [31] A boundary integral equation method for the fluid-solid interaction problem
    Sun, Yao
    Wang, Pan
    Lu, Xinru
    Chen, Bo
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (04): : 716 - 742
  • [32] A domain-type boundary-integral-equation method for two-dimensional biharmonic Dirichlet problem
    Mai-Duy, N.
    Tran-Cong, T.
    Tanner, R. I.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (10) : 809 - 817
  • [33] Analysis of segregated boundary-domain integral equations for BVPs with non-smooth coefficients on Lipschitz domains
    Sergey E. Mikhailov
    [J]. Boundary Value Problems, 2018
  • [34] Second kind boundary integral equation for multi-subdomain diffusion problems
    X. Claeys
    R. Hiptmair
    E. Spindler
    [J]. Advances in Computational Mathematics, 2017, 43 : 1075 - 1101
  • [35] Second kind boundary integral equation for multi-subdomain diffusion problems
    Claeys, X.
    Hiptmair, R.
    Spindler, E.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (05) : 1075 - 1101
  • [36] Domain sampling methods for an inverse boundary value problem of the heat equation
    Sun, Shiwei
    Nakamura, Gen
    Wang, Haibing
    [J]. INVERSE PROBLEMS, 2024, 40 (12)
  • [37] Localized boundary-domain singular integral equations of Dirichlet problem for self-adjoint second-order strongly elliptic PDE systems
    Chkadua, O.
    Mikhailov, S. E.
    Natroshvili, D.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (06) : 1817 - 1837
  • [38] On the numerical solution of a boundary integral equation for the exterior Neumann problem on domains with corners
    Fermo, L.
    Laurita, C.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2015, 94 : 179 - 200
  • [39] BOUNDARY TEMPERATURE RECONSTRUCTION IN AN INVERSE HEAT CONDUCTION PROBLEM USING BOUNDARY INTEGRAL EQUATION METHOD
    Garshasbi, M.
    Hassani, F.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (05): : 1039 - 1056
  • [40] A Nystrom method for a boundary integral equation related to the Dirichlet problem on domains with corners
    Fermo, Luisa
    Laurita, Concetta
    [J]. NUMERISCHE MATHEMATIK, 2015, 130 (01) : 35 - 71