Extending OpenKIM with an Uncertainty Quantification Toolkit for Molecular Modeling

被引:0
作者
Kurniawan, Yonatan [1 ]
Petrie, Cody L. [1 ]
Transtrum, Mark K. [1 ]
Tadmor, Ellad B. [2 ]
Elliott, Ryan S. [2 ]
Karls, Daniel S. [2 ]
Wen, Mingjian [3 ]
机构
[1] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
[2] Univ Minnesota, Dept Aerosp Engn & Mech, Minneapolis, MN 55455 USA
[3] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA USA
来源
2022 IEEE 18TH INTERNATIONAL CONFERENCE ON E-SCIENCE (ESCIENCE 2022) | 2022年
基金
美国国家科学基金会;
关键词
Interatomic potential; MCMC; uncertainty quantification; OpenKIM; DYNAMICS SIMULATIONS; POTENTIALS;
D O I
10.1109/eScience55777.2022.00050
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Atomistic simulations are an important tool in materials modeling. Interatomic potentials (IPs) are at the heart of such molecular models, and the accuracy of a model's predictions depends strongly on the choice of IP. Uncertainty quantification (UQ) is an emerging tool for assessing the reliability of atomistic simulations. The Open Knowledgebase of Interatomic Models (OpenKIM) is a cyberinfrastructure project whose goal is to collect and standardize the study of IPs to enable transparent, reproducible research. Part of the OpenKIM framework is the Python package, KIM-based Learning-Integrated Fitting Framework (KLIFF), that provides tools for fitting parameters in an IP to data. This paper introduces a UQ toolbox extension to KLIFF. We focus on two sources of uncertainty: variations in parameters and inadequacy of the functional form of the IP. Our implementation uses parallel-tempered Markov chain Monte Carlo (PTMCMC), adjusting the sampling temperature to estimate the uncertainty due to the functional form of the IP. We demonstrate on a Stillinger-Weber potential that makes predictions for the atomic energies and forces for silicon in a diamond configuration. Finally, we highlight some potential subtleties in applying and using these tools with recommendations for practitioners and IP developers.
引用
收藏
页码:367 / 377
页数:11
相关论文
共 72 条
[1]   Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework [J].
Angelikopoulos, Panagiotis ;
Papadimitriou, Costas ;
Koumoutsakos, Petros .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (14)
[2]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[3]  
Brenner DW, 2000, PHYS STATUS SOLIDI B, V217, P23, DOI 10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO
[4]  
2-N
[5]   Potfit:: effective potentials from ab initio data [J].
Brommer, Peter ;
Gaehler, Franz .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2007, 15 (03) :295-304
[6]   General methods for monitoring convergence of iterative simulations [J].
Brooks, SP ;
Gelman, A .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (04) :434-455
[7]  
Christensen R., 2020, SER ELSEVIER SERIES, P77
[8]  
colabfit, COLABFIT COLLABORATI
[9]   Maximum Likelihood, Profile Likelihood, and Penalized Likelihood: A Primer [J].
Cole, Stephen R. ;
Chu, Haitao ;
Greenland, Sander .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (02) :252-260
[10]  
Cools-Ceuppens M., 2017, THESIS GHENT U