Local Transformation Kernel Density Estimation of Loss Distributions

被引:30
作者
Gustafsson, J. [1 ,2 ]
Hagmann, M. [3 ]
Nielsen, J. P. [4 ]
Scaillet, O. [5 ,6 ]
机构
[1] Royal&SunAlliance, Copenhagen, Denmark
[2] Univ Copenhagen, Copenhagen, Denmark
[3] Swiss Finance Inst & Concordia Advisors, London, England
[4] Citta Univ, CASS Business Sch, London, England
[5] Univ Geneva, HEC, Geneva, Switzerland
[6] Swiss Finance Inst, Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
Actuarial loss models; Asymmetric kernels; Champernowne distribution; Local likelihood estimation; Transformation; BOUNDARY CORRECTION; CURVES;
D O I
10.1198/jbes.2009.0011
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a tailor-made semiparametric asymmetric kernel density estimator for the estimation of actuarial loss distributions. The estimator is obtained by transforming the data with the generalized Champernowne distribution initially fitted to the data, Then the density of the transformed data is estimated by use of local asymmetric kernel methods to obtain superior estimation properties in the tails. We find in a vast simulation study that the proposed semi parametric estimation procedure performs well relative to alternative estimators. An application to operational loss data illustrates the proposed method.
引用
收藏
页码:161 / 175
页数:15
相关论文
共 36 条
[1]   Quadratic engel curves and consumer demand [J].
Banks, J ;
Blundell, R ;
Lewbel, A .
REVIEW OF ECONOMICS AND STATISTICS, 1997, 79 (04) :527-539
[2]   Kernel density estimation of actuarial loss functions [J].
Bolancé, C ;
Guillen, M ;
Nielsen, JP .
INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (01) :19-36
[3]   Consistency of asymmetric kernel density estimators and smoothed histograms with application to income data [J].
Bouezmarni, T ;
Scaillet, O .
ECONOMETRIC THEORY, 2005, 21 (02) :390-412
[4]   Consistency of the beta kernel density function estimator [J].
Bouezmarni, T ;
Rolin, JM .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01) :89-98
[5]   Beta-Bernstein smoothing for regression curves with compact support [J].
Brown, BM ;
Chen, SX .
SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (01) :47-59
[6]   Kernel density estimation for heavy-tailed distributions using the Champernowne transformation [J].
Buch-Larsen, T ;
Nielsen, JP ;
Guillén, M ;
Bolancé, C .
STATISTICS, 2005, 39 (06) :503-518
[7]   THE GRADUATION OF INCOME DISTRIBUTIONS [J].
Champernowne, D. G. .
ECONOMETRICA, 1952, 20 (04) :591-615
[8]  
CHAMPERNOWNE DG, 1936, ECONOMETRICA, V5, P361
[9]   Probability density function estimation using gamma kernels [J].
Chen, SX .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (03) :471-480
[10]   Beta kernel estimators for density functions [J].
Chen, SX .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (02) :131-145