HiPR: High-throughput probabilistic RNA structure inference

被引:0
|
作者
Kuksa, Pavel P. [1 ]
Li, Fan [4 ]
Kannan, Sampath [2 ]
Gregory, Brian D. [3 ]
Leung, Yuk Yee [1 ]
Wang, Li-San [1 ,2 ]
机构
[1] Univ Penn, Penn Neurodegenerat Genom Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[4] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA
关键词
High-throughput structure-sensitive sequencing; RNA structure inference; Probabilistic modeling; DMS-seq; DMS-MaPseq; SELECTIVE 2'-HYDROXYL ACYLATION; SECONDARY STRUCTURE PREDICTION; PRIMER EXTENSION; IN-VIVO; SHAPE-MAP; CONSTRAINTS; BINDING;
D O I
10.1016/j.csbj.2020.06.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1539 / 1547
页数:9
相关论文
共 50 条
  • [41] A high-throughput approach for measuring temporal changes in the interactome
    Kristensen, Anders R.
    Gsponer, Joerg
    Foster, Leonard J.
    NATURE METHODS, 2012, 9 (09) : 907 - +
  • [42] High-throughput ultraviolet photoacoustic microscopy with multifocal excitation
    Imai, Toru
    Shi, Junhui
    Wong, Terence T. W.
    Li, Lei
    Zhu, Liren
    Wang, Lihong V.
    JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (03)
  • [43] Novel High-throughput Approach for Purification of Infectious Virions
    James, Kevin T.
    Cooney, Brad
    Agopsowicz, Kate
    Trevors, Mary Ann
    Mohamed, Adil
    Stoltz, Don
    Hitt, Mary
    Shmulevitz, Maya
    SCIENTIFIC REPORTS, 2016, 6
  • [44] Development of High-Throughput Screening Assay for Antihantaviral Therapeutics
    Roy, Anuradha
    Mir, Mohammad A.
    SLAS DISCOVERY, 2017, 22 (06) : 767 - 774
  • [45] High-Throughput Fluorescence Assays for Ion Channels and GPCRs
    Vetter, Irina
    Carter, David
    Bassett, John
    Deuis, Jennifer R.
    Tay, Bryan
    Jami, Sina
    Robinson, Samuel D.
    CALCIUM SIGNALING, 2ND EDITION, 2020, 1131 : 27 - 72
  • [46] High-throughput SNP analysis for genetic association studies
    Marnellos, G
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2003, 6 (03) : 317 - 321
  • [47] Determination of tRNA aminoacylation levels by high-throughput sequencing
    Evans, Molly E.
    Clark, Wesley C.
    Zheng, Guanqun
    Pan, Tao
    NUCLEIC ACIDS RESEARCH, 2017, 45 (14) : E133
  • [48] A high-throughput chemically induced inflammation assay in zebrafish
    d'Alencon, Claudia A.
    Pena, Oscar A.
    Wittmann, Christine
    Gallardo, Viviana E.
    Jones, Rebecca A.
    Loosli, Felix
    Liebel, Urban
    Grabher, Clemens
    Allende, Miguel L.
    BMC BIOLOGY, 2010, 8
  • [49] High-Throughput Quantification of Surface Protein Internalization and Degradation
    Stuber, Jakob C.
    Kast, Florian
    Pluckthun, Andreas
    ACS CHEMICAL BIOLOGY, 2019, 14 (06) : 1154 - 1163
  • [50] High-Throughput Analysis of Ovarian Granulosa Cell Transcriptome
    Chronowska, Ewa
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014