HiPR: High-throughput probabilistic RNA structure inference

被引:0
|
作者
Kuksa, Pavel P. [1 ]
Li, Fan [4 ]
Kannan, Sampath [2 ]
Gregory, Brian D. [3 ]
Leung, Yuk Yee [1 ]
Wang, Li-San [1 ,2 ]
机构
[1] Univ Penn, Penn Neurodegenerat Genom Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[4] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA
关键词
High-throughput structure-sensitive sequencing; RNA structure inference; Probabilistic modeling; DMS-seq; DMS-MaPseq; SELECTIVE 2'-HYDROXYL ACYLATION; SECONDARY STRUCTURE PREDICTION; PRIMER EXTENSION; IN-VIVO; SHAPE-MAP; CONSTRAINTS; BINDING;
D O I
10.1016/j.csbj.2020.06.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1539 / 1547
页数:9
相关论文
共 50 条
  • [21] High-Throughput Nonlinear Optical Microscopy
    So, Peter T. C.
    Yew, Elijah Y. S.
    Rowlands, Christopher
    BIOPHYSICAL JOURNAL, 2013, 105 (12) : 2641 - 2654
  • [22] The Potential Cost of High-Throughput Proteomics
    White, Forest M.
    SCIENCE SIGNALING, 2011, 4 (160)
  • [23] A high-throughput approach to predict A-to-I effects on RNA structure indicates a change of double-stranded content in noncoding RNAs
    Ponti, Riccardo Delli
    Broglia, Laura
    Vandelli, Andrea
    Armaos, Alexandros
    Torrent Burgas, Marc
    Sanchez de Groot, Natalia
    Tartaglia, Gian Gaetano
    IUBMB LIFE, 2023, 75 (05) : 411 - 426
  • [24] High-throughput RNA structure probing reveals critical folding events during early 60S ribosome assembly in yeast
    Burlacu, Elena
    Lackmann, Fredrik
    Aguilar, Lisbeth-Carolina
    Belikov, Sergey
    van Nues, Rob
    Trahan, Christian
    Hector, Ralph D.
    Dominelli-Whiteley, Nicholas
    Cockroft, Scott L.
    Wieslander, Lars
    Oeffinger, Marlene
    Granneman, Sander
    NATURE COMMUNICATIONS, 2017, 8
  • [25] High-throughput dissection of the thermodynamic and conformational properties of a ubiquitous class of RNA tertiary contact motifs
    Bonilla, Steve L.
    Denny, Sarah K.
    Shin, John H.
    Alvarez-Buylla, Aurora
    Greenleaf, William J.
    Herschlag, Daniel
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (33)
  • [26] A high-throughput, quantitative cell-based screen for efficient tailoring of RNA device activity
    Liang, Joe C.
    Chang, Andrew L.
    Kennedy, Andrew B.
    Smolke, Christina D.
    NUCLEIC ACIDS RESEARCH, 2012, 40 (20) : e154
  • [27] A comprehensive RNA handling and transcriptomics guide for high-throughput processing of Plasmodium blood-stage samples
    Kucharski, Michal
    Tripathi, Jaishree
    Nayak, Sourav
    Zhu, Lei
    Wirjanata, Grennady
    van der Pluijm, Rob W.
    Dhorda, Mehul
    Dondorp, Arjen
    Bozdech, Zbynek
    MALARIA JOURNAL, 2020, 19 (01)
  • [28] Discriminative motif analysis of high-throughput dataset
    Yao, Zizhen
    MacQuarrie, Kyle L.
    Fong, Abraham P.
    Tapscott, Stephen J.
    Ruzzo, Walter L.
    Gentleman, Robert C.
    BIOINFORMATICS, 2014, 30 (06) : 775 - 783
  • [29] A High-Throughput Model for Fat Graft Assessment
    Medina, Miguel A., III
    Nguyen, John T.
    McCormack, Michael M.
    Randolph, Mark A.
    Austen, William G., Jr.
    LASERS IN SURGERY AND MEDICINE, 2009, 41 (10) : 738 - 744
  • [30] Functional annotation of lncRNA in high-throughput screening
    Yip, Chi Wai
    Sivaraman, Divya M.
    Prabhu, Anika V.
    Shin, Jay W.
    NON-CODING GENOME, 2021, 65 (04): : 761 - 773