HiPR: High-throughput probabilistic RNA structure inference

被引:0
作者
Kuksa, Pavel P. [1 ]
Li, Fan [4 ]
Kannan, Sampath [2 ]
Gregory, Brian D. [3 ]
Leung, Yuk Yee [1 ]
Wang, Li-San [1 ,2 ]
机构
[1] Univ Penn, Penn Neurodegenerat Genom Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[4] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA
关键词
High-throughput structure-sensitive sequencing; RNA structure inference; Probabilistic modeling; DMS-seq; DMS-MaPseq; SELECTIVE 2'-HYDROXYL ACYLATION; SECONDARY STRUCTURE PREDICTION; PRIMER EXTENSION; IN-VIVO; SHAPE-MAP; CONSTRAINTS; BINDING;
D O I
10.1016/j.csbj.2020.06.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1539 / 1547
页数:9
相关论文
共 51 条
[11]   EFFICIENT RANDOMIZED PATTERN-MATCHING ALGORITHMS [J].
KARP, RM ;
RABIN, MO .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1987, 31 (02) :249-260
[12]   Genome-wide measurement of RNA secondary structure in yeast [J].
Kertesz, Michael ;
Wan, Yue ;
Mazor, Elad ;
Rinn, John L. ;
Nutter, Robert C. ;
Chang, Howard Y. ;
Segal, Eran .
NATURE, 2010, 467 (7311) :103-107
[13]  
Kladwang W, 2011, BIOCHEMISTRY-US, V50, P8049, DOI [10.1021/bi200524n, 10.1021/bi4200524n]
[14]   DASHR 2.0: integrated database of human small non-coding RNA genes and mature products [J].
Kuksa, Pavel P. ;
Amlie-Wolf, Alexandre ;
Katanic, Zivadin ;
Valladares, Otto ;
Wang, Li-San ;
Leung, Yuk Yee .
BIOINFORMATICS, 2019, 35 (06) :1033-1039
[15]   Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure [J].
Lackey, Lela ;
Coria, Aaztli ;
Woods, Chanin ;
McArthur, Evonne ;
Laederach, Alain .
RNA, 2018, 24 (04) :513-528
[16]   DASHR: database of small human noncoding RNAs [J].
Leung, Yuk Yee ;
Kuksa, Pavel P. ;
Amlie-Wolf, Alexandre ;
Valladares, Otto ;
Ungar, Lyle H. ;
Kannan, Sampath ;
Gregory, Brian D. ;
Wang, Li-San .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D216-D222
[17]   Regulatory Impact of RNA Secondary Structure across the Arabidopsis Transcriptome [J].
Li, Fan ;
Zheng, Qi ;
Vandivier, Lee E. ;
Willmann, Matthew R. ;
Chen, Ying ;
Gregory, Brian D. .
PLANT CELL, 2012, 24 (11) :4346-4359
[18]   RNA folding with hard and soft constraints [J].
Lorenz, Ronny ;
Hofacker, Ivo L. ;
Stadler, Peter F. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2016, 11
[19]   ViennaRNA Package 2.0 [J].
Lorenz, Ronny ;
Bernhart, Stephan H. ;
Siederdissen, Christian Hoener Zu ;
Tafer, Hakim ;
Flamm, Christoph ;
Stadler, Peter F. ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6
[20]   SHAPE-directed RNA secondary structure prediction [J].
Low, Justin T. ;
Weeks, Kevin M. .
METHODS, 2010, 52 (02) :150-158