HiPR: High-throughput probabilistic RNA structure inference

被引:0
作者
Kuksa, Pavel P. [1 ]
Li, Fan [4 ]
Kannan, Sampath [2 ]
Gregory, Brian D. [3 ]
Leung, Yuk Yee [1 ]
Wang, Li-San [1 ,2 ]
机构
[1] Univ Penn, Penn Neurodegenerat Genom Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[4] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA
关键词
High-throughput structure-sensitive sequencing; RNA structure inference; Probabilistic modeling; DMS-seq; DMS-MaPseq; SELECTIVE 2'-HYDROXYL ACYLATION; SECONDARY STRUCTURE PREDICTION; PRIMER EXTENSION; IN-VIVO; SHAPE-MAP; CONSTRAINTS; BINDING;
D O I
10.1016/j.csbj.2020.06.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1539 / 1547
页数:9
相关论文
共 51 条
[1]   RNA STRAND: The RNA secondary structure and statistical analysis database [J].
Andronescu, Mirela ;
Bereg, Vera ;
Hoos, Holger H. ;
Condon, Anne .
BMC BIOINFORMATICS, 2008, 9 (1)
[2]   Analyses of mRNA structure dynamics identify embryonic gene regulatory programs [J].
Beaudoin, Jean-Denis ;
Novoa, Eva Maria ;
Vejnar, Charles E. ;
Yartseva, Valeria ;
Takacs, Carter M. ;
Kellis, Manolis ;
Giraldez, Antonio J. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2018, 25 (08) :677-+
[3]   The Comparative RNA Web (CRW) Site:: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs -: art. no. 2 [J].
Cannone, JJ ;
Subramanian, S ;
Schnare, MN ;
Collett, JR ;
D'Souza, LM ;
Du, YS ;
Feng, B ;
Lin, N ;
Madabusi, LV ;
Müller, KM ;
Pande, N ;
Shang, ZD ;
Yu, N ;
Gutell, RR .
BMC BIOINFORMATICS, 2002, 3 (1)
[4]   Quantitative Dimethyl Sulfate Mapping for Automated RNA Secondary Structure Inference [J].
Cordero, Pablo ;
Kladwang, Wipapat ;
VanLang, Christopher C. ;
Das, Rhiju .
BIOCHEMISTRY, 2012, 51 (36) :7037-7039
[5]   Accurate SHAPE-directed RNA structure determination [J].
Deigan, Katherine E. ;
Li, Tian W. ;
Mathews, David H. ;
Weeks, Kevin M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (01) :97-102
[6]   RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble [J].
Ding, Y ;
Chan, CY ;
Lawrence, CE .
RNA, 2005, 11 (08) :1157-1166
[7]   In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features [J].
Ding, Yiliang ;
Tang, Yin ;
Kwok, Chun Kit ;
Zhang, Yu ;
Bevilacqua, Philip C. ;
Assmann, Sarah M. .
NATURE, 2014, 505 (7485) :696-+
[8]   RNA structural motifs: building blocks of a modular biomolecule [J].
Hendrix, Donna K. ;
Brenner, Steven E. ;
Holbrook, Stephen R. .
QUARTERLY REVIEWS OF BIOPHYSICS, 2005, 38 (03) :221-243
[9]   Conserved RNA structures in the non-canonical Hac1/Xbp1 intron [J].
Hooks, Katarzyna B. ;
Griffiths-Jones, Sam .
RNA BIOLOGY, 2011, 8 (04) :552-556
[10]  
JAMES BD, 1989, METHOD ENZYMOL, V180, P227