HiPR: High-throughput probabilistic RNA structure inference

被引:0
|
作者
Kuksa, Pavel P. [1 ]
Li, Fan [4 ]
Kannan, Sampath [2 ]
Gregory, Brian D. [3 ]
Leung, Yuk Yee [1 ]
Wang, Li-San [1 ,2 ]
机构
[1] Univ Penn, Penn Neurodegenerat Genom Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[4] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA
关键词
High-throughput structure-sensitive sequencing; RNA structure inference; Probabilistic modeling; DMS-seq; DMS-MaPseq; SELECTIVE 2'-HYDROXYL ACYLATION; SECONDARY STRUCTURE PREDICTION; PRIMER EXTENSION; IN-VIVO; SHAPE-MAP; CONSTRAINTS; BINDING;
D O I
10.1016/j.csbj.2020.06.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1539 / 1547
页数:9
相关论文
共 50 条
  • [1] Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments
    Selega, Alina
    Sirocchi, Christel
    Iosub, Ira
    Granneman, Sander
    Sanguinetti, Guido
    NATURE METHODS, 2017, 14 (01) : 83 - 89
  • [2] High-throughput determination of RNA structures
    Strobel, Eric J.
    Yu, Angela M.
    Lucks, Julius B.
    NATURE REVIEWS GENETICS, 2018, 19 (10) : 615 - 634
  • [3] Mod-seq: A High-Throughput Method for Probing RNA Secondary Structure
    Lin, Yizhu
    May, Gemma E.
    McManus, C. Joel
    STRUCTURES OF LARGE RNA MOLECULES AND THEIR COMPLEXES, 2015, 558 : 125 - 152
  • [4] High-throughput cellular RNA device engineering
    Townshend, Brent
    Kennedy, Andrew B.
    Xiang, Joy S.
    Smolke, Christina D.
    NATURE METHODS, 2015, 12 (10) : 989 - 994
  • [5] High-throughput characterization of protein-RNA interactions
    Cook, Kate B.
    Hughes, Timothy R.
    Morris, Quaid D.
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2015, 14 (01) : 74 - 89
  • [6] RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data
    Wu, Yang
    Qu, Rihao
    Huang, Yiming
    Shi, Binbin
    Liu, Mengrong
    Li, Yang
    Lu, Zhi John
    NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W294 - W301
  • [7] Mapping platinum adducts on yeast ribosomal RNA using high-throughput sequencing
    Plakos, Kory
    DeRose, Victoria J.
    CHEMICAL COMMUNICATIONS, 2017, 53 (95) : 12746 - 12749
  • [8] Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing
    Wan, Yue
    Qu, Kun
    Ouyang, Zhengqing
    Chang, Howard Y.
    NATURE PROTOCOLS, 2013, 8 (05) : 849 - 869
  • [9] Systematic reconstruction of RNA functional motifs with high-throughput microfluidics
    Martin, Lance
    Meier, Matthias
    Lyons, Shawn M.
    Sit, Rene V.
    Marzluff, William F.
    Quake, Stephen R.
    Chang, Howard Y.
    NATURE METHODS, 2012, 9 (12) : 1192 - U85
  • [10] reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction
    Kawaguchi, Risa
    Kiryu, Hisanori
    Iwakiri, Junichi
    Sese, Jun
    BMC BIOINFORMATICS, 2019, 20 (Suppl 3)