Ru-Rh based catalysts for hydrogen production via methanol steam reforming in conventional and membrane reactors

被引:41
作者
Lytkina, A. A. [1 ]
Orekhova, N. V. [1 ]
Ermilova, M. M. [1 ]
Petriev, I. S. [2 ]
Baryshev, M. G. [2 ]
Yaroslavtsev, A. B. [1 ,3 ,4 ]
机构
[1] Russian Acad Sci, AV Topchiev Inst Petrochem Synth, Leninsky Prospect 29, Moscow 119991, Russia
[2] Kuban State Univ, Krasnodar, Russia
[3] Russian Acad Sci, NS Kurnakov Inst Gen & Inorgan Chem, Leninsky Prospect 31, Moscow 119991, Russia
[4] Natl Res Univ, Higher Sch Econ, Myasnitskaya Ulitsa 20, Moscow 101000, Russia
关键词
Membrane catalysis; Pd-containing membranes; Methanol steam reforming; Hydrogen production; Ru-Rh catalysts; Support; CONCENTRATION POLARIZATION; ETHANOL; PD; CELL; NANODIAMONDS; TRANSITION; ENERGY;
D O I
10.1016/j.ijhydene.2019.03.205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Results of hydrogen production study in methanol steam reforming (MSR) process with the use of Ru-0.5-Rh-0.5 catalysts supported on different carbon materials: synthetic graphite like material Sibunit, carbon black Ketjenblack EC600DJ, detonation nanodiamonds (DND) and ZrO2-based material with fluorite structure, doped with ceria, have been described. The samples have been tested in conventional flow reactor and membrane (MR) reactor, containing Pd-based membranes with different composition, thickness and surface architecture. It has been shown that the catalytic activity of the composites depends on the support nature. The Ru-Rh/DND catalyst exhibits the highest activity, whereas Ru-Rh/Ce0.1O2-delta is the most selective. The use of Pd-Ag (23%) foil with the surface modified by palladium black showed great advantages comparing to the smooth dense membrane. The use of the MR with the Pd-Ag membrane improves the MSR reaction and provides almost 50% increase in the hydrogen yield. The hydrogen produced with the use of the MR is ultra pure. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13310 / 13322
页数:13
相关论文
共 50 条
  • [21] Insights into the Mechanism of Methanol Steam Reforming for Hydrogen Production over Ni-Cu-Based Catalysts
    Fajin, Jose L. C.
    Cordeiro, M. Natalia D. S.
    ACS CATALYSIS, 2022, 12 (01) : 512 - 526
  • [22] Zinc oxide nanorods based catalysts for hydrogen production by steam reforming of methanol
    Danwittayakul, Supamas
    Dutta, Joydeep
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (07) : 5518 - 5526
  • [23] Application of copper-based catalysts for hydrogen production in methanol steam reforming
    用于甲醇重整制氢的铜基催化剂研究进展
    Sun, Xiaoming (sunxm@mail.buct.edu.cn); Zhou, Daojin (zhoudj@mail.buct.edu.cn), 1600, Materials China (72): : 5975 - 6001
  • [24] Hydrogen production from steam reforming of methanol: A comprehensive review on thermodynamics, catalysts, reactors, and kinetic studies
    Achomo, Masresha Adasho
    Kumar, Alok
    Peela, Nageswara Rao
    Muthukumar, P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 1640 - 1672
  • [25] On the energy efficiency of hydrogen production processes via steam reforming using membrane reactors
    Bruni, G.
    Rizzello, C.
    Santucci, A.
    Alique, D.
    Incelli, M.
    Tosti, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (02) : 988 - 999
  • [26] Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming
    Lytkina, A. A.
    Zhilyaeva, N. A.
    Ermilova, M. M.
    Orekhova, N. V.
    Yaroslavtsev, A. B.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (31) : 9677 - 9684
  • [27] Intensification of hydrogen production by methanol steam reforming
    Sanz, Oihane
    Velasco, Ion
    Perez-Miqueo, Inigo
    Poyato, Rosalia
    Antonio Odriozola, Jose
    Montes, Mario
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (10) : 5250 - 5259
  • [28] Evaluation of silica membrane reactor performance for hydrogen production via methanol steam reforming: Modeling study
    Ghasemzadeh, K.
    Morrone, P.
    Liguori, S.
    Babaluo, A. A.
    Basile, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (36) : 16698 - 16709
  • [29] Mathematical Modeling of Hydrogen Production via Methanol-Steam Reforming with Heat-Coupled and Membrane-Assisted Reactors
    Chein, Rei-Yu
    Chen, Yen-Cho
    Chung, Jacob Nan-Chu
    CHEMICAL ENGINEERING & TECHNOLOGY, 2014, 37 (11) : 1907 - 1918
  • [30] Hydrogen production by steam reforming of methanol
    Iwasa, N
    Nomura, W
    Mayanagi, T
    Fujita, S
    Arai, M
    Takezawa, N
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2004, 37 (02) : 286 - 293