Optimization of T4 phage engineering via CRISPR/Cas9

被引:41
作者
Duong, Michelle M. [1 ]
Carmody, Caitlin M. [1 ]
Ma, Qinqin [1 ,2 ]
Peters, Joseph E. [3 ]
Nugen, Sam R. [1 ]
机构
[1] Cornell Univ, Dept Food Sci & Technol, Ithaca, NY 14853 USA
[2] Sichuan Normal Univ, Coll Life Sci, Chengdu, Peoples R China
[3] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA
基金
美国食品与农业研究所;
关键词
DEPENDENT DNA-REPLICATION; LISTERIA-MONOCYTOGENES; BACTERIOPHAGE; TOOL; RECOMBINATION; CONTAMINATION; BIOSENSORS; REPORTER; SEQUENCE; THERAPY;
D O I
10.1038/s41598-020-75426-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A major limitation hindering the widespread use of synthetic phages in medical and industrial settings is the lack of an efficient phage-engineering platform. Classical T4 phage engineering and several newly proposed methods are often inefficient and time consuming and consequently, only able to produce an inconsistent range of genomic editing rates between 0.03-3%. Here, we review and present new understandings of the CRISPR/Cas9 assisted genome engineering technique that significantly improves the genomic editing rate of T4 phages. Our results indicate that crRNAs selection is a major rate limiting factor in T4 phage engineering via CRISPR/Cas9. We were able to achieve an editing rate of > 99% for multiple genes that functionalizes the phages for further applications. We envision that this improved phage-engineering platform will accelerate the fields of individualized phage therapy, biocontrol, and rapid diagnostics.
引用
收藏
页数:9
相关论文
共 46 条
  • [1] Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7
    Abuladze, Tamar
    Li, Manrong
    Menetrez, Marc Y.
    Dean, Timothy
    Senecal, Andre
    Sulakvelidze, Alexander
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (20) : 6230 - 6238
  • [2] Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing
    Ando, Hiroki
    Lemire, Sebastien
    Pires, Diana P.
    Lu, Timothy K.
    [J]. CELL SYSTEMS, 2015, 1 (03) : 187 - 196
  • [3] Phage on tap-a quick and efficient protocol for the preparation of bacteriophage laboratory stocks
    Bonilla, Natasha
    Rojas, Maria Isabel
    Cruz, Giuliano Netto Flores
    Hung, Shr-Hau
    Rohwer, Forest
    Barr, Jeremy J.
    [J]. PEERJ, 2016, 4
  • [4] Bacteriophage P100 for control of Listeria monocytogenes in foods:: Genome sequence, bioinformatic analyses, oral toxicity study, and application
    Carlton, RM
    Noordman, WH
    Biswas, B
    de Meester, ED
    Loessner, MJ
    [J]. REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2005, 43 (03) : 301 - 312
  • [5] Chan BK, 2013, FUTURE MICROBIOL, V8, P769, DOI [10.2217/FMB.13.47, 10.2217/fmb.13.47]
  • [6] Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus
    Dedrick, Rebekah M.
    Guerrero-Bustamante, Carlos A.
    Garlena, Rebecca A.
    Russell, Daniel A.
    Ford, Katrina
    Harris, Kathryn
    Gilmour, Kimberly C.
    Soothill, James
    Jacobs-Sera, Deborah
    Schooley, Robert T.
    Hatfull, Graham F.
    Spencer, Helen
    [J]. NATURE MEDICINE, 2019, 25 (05) : 730 - +
  • [7] Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
    Doench, John G.
    Fusi, Nicolo
    Sullender, Meagan
    Hegde, Mudra
    Vaimberg, Emma W.
    Donovan, Katherine F.
    Smith, Ian
    Tothova, Zuzana
    Wilen, Craig
    Orchard, Robert
    Virgin, Herbert W.
    Listgarten, Jennifer
    Root, David E.
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (02) : 184 - +
  • [8] Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
    Doench, John G.
    Hartenian, Ella
    Graham, Daniel B.
    Tothova, Zuzana
    Hegde, Mudra
    Smith, Ian
    Sullender, Meagan
    Ebert, Benjamin L.
    Xavier, Ramnik J.
    Root, David E.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (12) : 1262 - U130
  • [9] Esvelt KM, 2013, NAT METHODS, V10, P1116, DOI [10.1038/NMETH.2681, 10.1038/nmeth.2681]
  • [10] A bacteriophage detection tool for viability assessment of Salmonella cells
    Fernandes, E.
    Martins, V. C.
    Nobrega, C.
    Carvalho, C. M.
    Cardoso, F. A.
    Cardoso, S.
    Dias, J.
    Deng, D.
    Kluskens, L. D.
    Freitas, P. P.
    Azeredo, J.
    [J]. BIOSENSORS & BIOELECTRONICS, 2014, 52 : 239 - 246