Higher rank curved Lie triples

被引:3
作者
Eschenburg, JH [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
关键词
symmetric spaces; restricted holonomy; submanifold equations; Gauss map; rank rigidity; extrinsic symmetry; isotropy orbits;
D O I
10.2969/jmsj/1191593908
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A substantial proper submanifold M of a Riemannian symmetric space S is called a curved Lie triple if its tangent space at every point is invariant under the curvature tensor of S, i.e. a sub-Lie triple. E.g. any complex submanifold of complex projective space has this property. However, if the tangent Lie triple is irreducible and of higher rank, we show a certain rigidity using the holonomy theorem of Berger and Simons: M must be intrinsically locally symmetric. In fact we conjecture that M is an extrinsically symmetric isotropy orbit. We are able to prove this conjecture provided that a tangent space of M is also a tangent space of such an orbit.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 12 条
[1]  
BERNDT J, 2002, SYMMETRIC SUBMANIFOL
[2]   Curved flats and isothermic surfaces [J].
Burstall, F ;
HertrichJeromin, U ;
Pedit, F ;
Pinkall, U .
MATHEMATISCHE ZEITSCHRIFT, 1997, 225 (02) :199-209
[3]   RIGIDITY OF HARMONIC MAPS OF MAXIMUM RANK [J].
CARLSON, JA ;
TOLEDO, D .
JOURNAL OF GEOMETRIC ANALYSIS, 1993, 3 (02) :99-140
[4]  
Eschenburg J. H., 1993, REND SEMIN MAT U PAD, V89, P11
[5]   Extrinsic symmetric spaces and orbits of s-representations [J].
Eschenburg, JH ;
Heintze, E .
MANUSCRIPTA MATHEMATICA, 1995, 88 (04) :517-524
[6]  
Eschenburg JH, 1999, J REINE ANGEW MATH, V507, P93
[7]   SYMMETRIC SUB-MANIFOLDS OF EUCLIDEAN-SPACE [J].
FERUS, D .
MATHEMATISCHE ANNALEN, 1980, 247 (01) :81-93
[8]  
Helgason S., 1979, Differential geometry, Lie groups and symmetric spaces
[9]   Grassmann geometries on compact symmetric spaces of general type [J].
Naitoh, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (03) :557-592
[10]  
OSIPOVA D, 2000, SYMMETRIC SUBMANIFOL