A finite-element capacitance matrix method for exterior Helmholtz problems

被引:36
作者
Ernst, OG
机构
[1] Inst. für Angew. Mathematik II, TU Bergakademie Freiberg
关键词
D O I
10.1007/s002110050236
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an algorithm for the efficient numerical solution of exterior boundary value problems for the Helmholtz equation. The problem is reformulated as an equivalent one on a bounded domain using an exact nonlocal boundary condition on a circular artificial boundary. An FFT-based fast Helmholtz solver is then derived for a finite-element discretization on an annular domain. The exterior problem for domains of general shape are treated using an imbedding or capacitance matrix method. The imbedding is achieved in such a way that the resulting capacitance matrix has a favorable spectral distribution leading to mesh independent convergence rates when Krylov subspace methods are used to solve the capacitance matrix equation.
引用
收藏
页码:175 / 204
页数:30
相关论文
共 23 条
[1]  
[Anonymous], 1987, ELECTROMAGNETIC ACOU
[2]  
BESPALOV A, 1992, 1614 INRIA
[3]   ITERATIVE METHODS FOR THE SOLUTION OF ELLIPTIC PROBLEMS ON REGIONS PARTITIONED INTO SUBSTRUCTURES [J].
BJORSTAD, PE ;
WIDLUND, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (06) :1097-1120
[4]  
BJORSTADT PE, 1984, SOLVING ELLIPTIC PRO, P245
[5]  
BORGERS C, 1990, SIAM J NUMER ANAL, V27, P963
[6]   DIRECT METHODS FOR SOLVING POISSONS EQUATIONS [J].
BUZBEE, BL ;
GOLUB, GH ;
NIELSON, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :627-&
[7]   DIRECT SOLUTION OF DISCRETE POISSON EQUATION ON IRREGULAR REGIONS [J].
BUZBEE, BL ;
DORR, FW ;
GEORGE, JA ;
GOLUB, GH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (04) :722-&
[8]  
Colton D., 1983, APPL MATH SCI, V93
[9]  
Colton D., 1983, INTEGRAL EQUATION ME