ECG Signal Classification Using Recurrence Plot-Based Approach and Deep Learning for Arrhythmia Prediction
被引:0
作者:
Martono, Niken Prasasti
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Fac Sci & Technol, Dept Ind Adm, Noda, Chiba, JapanTokyo Univ Sci, Fac Sci & Technol, Dept Ind Adm, Noda, Chiba, Japan
Martono, Niken Prasasti
[1
]
Nishiguchi, Toru
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Fac Sci & Technol, Dept Ind Adm, Noda, Chiba, JapanTokyo Univ Sci, Fac Sci & Technol, Dept Ind Adm, Noda, Chiba, Japan
Nishiguchi, Toru
[1
]
Ohwada, Hayato
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Fac Sci & Technol, Dept Ind Adm, Noda, Chiba, JapanTokyo Univ Sci, Fac Sci & Technol, Dept Ind Adm, Noda, Chiba, Japan
Ohwada, Hayato
[1
]
机构:
[1] Tokyo Univ Sci, Fac Sci & Technol, Dept Ind Adm, Noda, Chiba, Japan
来源:
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT I
|
2022年
/
13757卷
关键词:
Arrhythmia;
Recurrence plot;
Convolutional neural network;
Electrocardiography;
Deep learning;
LDA;
D O I:
10.1007/978-3-031-21743-2_26
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Automatic electrocardiogram (ECG) analysis is crucial in diagnosing heart arrhythmia but is limited by the performance of existing models owing to the high complexity of time series data analysis. Arrhythmia is a heart condition in which the rate or rhythm of the heartbeat is abnormal. The heartbeat may be excessively fast or slow or may have an irregular pattern. Research has shown that the use of deep Convolutional Neural Networks (CNNs) for time-series classification has several advantages over other methods.They are highly noise-resistant models and can very informatively extract deep features that are independent of time. Five classes of heartbeat types in the MIT-BIH arrhythmia database were classified using the resilient and efficient deep CNNs proposed in this study. The proposed method achieved the best score (95.8% accuracy) for arrhythmia detection using the deep learning classification method.
机构:
Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
Luz, Eduardo Jose da S.
Schwartz, William Robson
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
Schwartz, William Robson
Camara-Chavez, Guillermo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
Camara-Chavez, Guillermo
Menotti, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
Univ Fed Parana, Dept Informat, BR-81531980 Curitiba, Parana, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
机构:
Indonesia Int Inst Life Sci, Sch Life Sci, Dept Bioinformat, Jl Pulomas Barat Kav 88, Jakarta 13210, IndonesiaYuan Ze Univ, Dept Mech Engn, Taoyuan 32003, Taiwan
Sadrawi, Muammar
Shieh, Jiann-Shing
论文数: 0引用数: 0
h-index: 0
机构:
Yuan Ze Univ, Dept Mech Engn, Taoyuan 32003, TaiwanYuan Ze Univ, Dept Mech Engn, Taoyuan 32003, Taiwan
机构:
Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
Luz, Eduardo Jose da S.
Schwartz, William Robson
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
Schwartz, William Robson
Camara-Chavez, Guillermo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
Camara-Chavez, Guillermo
Menotti, David
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
Univ Fed Parana, Dept Informat, BR-81531980 Curitiba, Parana, BrazilUniv Fed Ouro Preto, Dept Comp, Ouro Preto, MG, Brazil
机构:
Indonesia Int Inst Life Sci, Sch Life Sci, Dept Bioinformat, Jl Pulomas Barat Kav 88, Jakarta 13210, IndonesiaYuan Ze Univ, Dept Mech Engn, Taoyuan 32003, Taiwan
Sadrawi, Muammar
Shieh, Jiann-Shing
论文数: 0引用数: 0
h-index: 0
机构:
Yuan Ze Univ, Dept Mech Engn, Taoyuan 32003, TaiwanYuan Ze Univ, Dept Mech Engn, Taoyuan 32003, Taiwan