Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin-orbit torque

被引:164
作者
Peng, Shouzhong [1 ,2 ]
Zhu, Daoqian [1 ]
Li, Weixiang [1 ,2 ]
Wu, Hao [3 ]
Grutter, Alexander J. [4 ]
Gilbert, Dustin A. [4 ,5 ]
Lu, Jiaqi [1 ,2 ]
Xiong, Danrong [1 ]
Cai, Wenlong [1 ]
Shafer, Padraic [6 ]
Wang, Kang L. [3 ]
Zhao, Weisheng [1 ,2 ]
机构
[1] Beihang Univ, Sch Integrated Circuit Sci & Engn, Beijing Adv Innovat Ctr Big Data & Brain Comp, Fert Beijing Inst, Beijing, Peoples R China
[2] Beihang Univ, Hefei Innovat Res Inst, Hefei, Peoples R China
[3] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
[4] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[5] Univ Tennessee, Mat Sci & Engn, Knoxville, TN USA
[6] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
基金
中国国家自然科学基金;
关键词
ROOM-TEMPERATURE; MAGNETIZATION; MAGNETORESISTANCE;
D O I
10.1038/s41928-020-00504-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The magnetization and exchange bias field in an IrMn/CoFeB bilayer can be independently switched using a current-controlled spin-orbit torque generated in the antiferromagnetic IrMn layer. The electrical manipulation of magnetization and exchange bias in antiferromagnet/ferromagnet thin films could be of use in the development of the next generation of spintronic devices. Current-controlled magnetization switching can be driven by spin-orbit torques generated in an adjacent heavy-metal layer, but these structures are difficult to integrate with exchange bias switching and tunnelling magnetoresistance measurements. Here, we report the current-induced switching of the exchange bias field in a perpendicularly magnetized IrMn/CoFeB bilayer structure using a spin-orbit torque generated in the antiferromagnetic IrMn layer. By manipulating the current direction and amplitude, independent and repeatable switching of the magnetization and exchange bias field below the blocking temperature can be achieved. The critical current density for the exchange bias switching is found to be larger than that for CoFeB magnetization reversal. X-ray magnetic circular dichroism, polarized neutron reflectometry measurements and micromagnetic simulations show that a small net magnetization within the IrMn interface plays a crucial role in these phenomena.
引用
收藏
页码:757 / 764
页数:8
相关论文
共 44 条
[1]  
Aley NP, 2008, IEEE T MAGN, V44, P2820, DOI 10.1109/TMAG.2008.2001317
[2]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]  
Baumgartner M, 2017, NAT NANOTECHNOL, V12, P980, DOI [10.1038/nnano.2017.151, 10.1038/NNANO.2017.151]
[4]   Electric field control of Neel spin-orbit torque in an antiferromagnet [J].
Chen, Xianzhe ;
Zhou, Xiaofeng ;
Cheng, Ran ;
Song, Cheng ;
Zhang, Jia ;
Wu, Yichuan ;
Ba, You ;
Li, Haobo ;
Sun, Yiming ;
You, Yunfeng ;
Zhao, Yonggang ;
Pan, Feng .
NATURE MATERIALS, 2019, 18 (09) :931-+
[5]   Modelling exchange bias with MuMax3 [J].
De Clercq, Jonas ;
Vansteenkiste, Arne ;
Abes, Medjid ;
Temst, Kristiaan ;
Van Waeyenberge, Bartel .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (43)
[6]   Micromagnetic Approach to Exchange Bias [J].
Dubowik, J. ;
Goscianska, I. .
ACTA PHYSICA POLONICA A, 2015, 127 (02) :147-152
[7]   Pinned magnetization in the antiferromagnet and ferromagnet of an exchange bias system [J].
Fitzsimmons, M. R. ;
Kirby, B. J. ;
Roy, S. ;
Li, Zhi-Pan ;
Roshchin, Igor V. ;
Sinha, S. K. ;
Schuller, Ivan K. .
PHYSICAL REVIEW B, 2007, 75 (21)
[8]  
Fukami S, 2016, NAT MATER, V15, P535, DOI [10.1038/NMAT4566, 10.1038/nmat4566]
[9]  
Jungwirth T, 2016, NAT NANOTECHNOL, V11, P231, DOI [10.1038/nnano.2016.18, 10.1038/NNANO.2016.18]
[10]   Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion [J].
Khvalkovskiy, A. V. ;
Cros, V. ;
Apalkov, D. ;
Nikitin, V. ;
Krounbi, M. ;
Zvezdin, K. A. ;
Anane, A. ;
Grollier, J. ;
Fert, A. .
PHYSICAL REVIEW B, 2013, 87 (02)