Fully dynamic algorithms for maintaining shortest paths trees

被引:124
|
作者
Frigioni, D
Marchetti-Spaccamela, A
Nanni, U
机构
[1] Univ Aquila, Dipartimento Ingn Elettr, I-67040 Laquila, Italy
[2] Univ Rome, Dipartimento Informat & Sistemist, I-00198 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, I-00198 Rome, Italy
来源
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC | 2000年 / 34卷 / 02期
关键词
D O I
10.1006/jagm.1999.1048
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose fully dynamic algorithms for maintaining the distances and the shortest paths from a single source in either a directed or an undirected graph with positive real edge weights, handling insertions, deletions, and weight updates of edges. The algorithms require linear space and optimal query time. The cost of the update operations depends on the class of the considered graph and on the number of the output updates, i.e., on the number of vertices that, due to an edge modification, either change the distance from the source or change the parent in the shortest paths tree. We first show that, if we deal only with updates on the weights of edges, then the update procedures require O(log n) worst case time per output update for several classes of graphs, as in the case of graphs with bounded genus, bounded arboricity, bounded degree, bounded treewidth, and bounded pagenumber. For general graphs with n vertices and m edges the algorithms require O(root m log n) worst case time per output update. We also show that, if insertions and deletions of edges are allowed, then similar amortized bounds hold. (C) 2000 Academic Press.
引用
收藏
页码:251 / 281
页数:31
相关论文
共 50 条
  • [41] EFFICIENT SEARCH AND HIERARCHICAL MOTION PLANNING BY DYNAMICALLY MAINTAINING SINGLE-SOURCE SHORTEST PATHS TREES
    BARBEHENN, M
    HUTCHINSON, S
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1995, 11 (02): : 198 - 214
  • [42] Shortest Augmenting Paths for Online Matchings on Trees
    Bosek, Bartlomiej
    Leniowski, Dariusz
    Sankowski, Piotr
    Zych, Anna
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2015, 2015, 9499 : 59 - 71
  • [43] Spanning trees and shortest paths in Monge graphs
    Dudas, T.
    Rudolf, R.
    Computing (Vienna/New York), 1998, 60 (02): : 109 - 119
  • [44] A Tight Bound for Shortest Augmenting Paths on Trees
    Bosek, Bartlomiej
    Leniowski, Dariusz
    Sankowski, Piotr
    Zych-Pawlewicz, Anna
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 201 - 216
  • [45] Spanning trees and shortest paths in monge graphs
    T. Dudás
    R. Rudolf
    Computing, 1998, 60 : 109 - 119
  • [46] Spanning trees and shortest paths in Monge graphs
    Dudas, T
    Rudolf, R
    COMPUTING, 1998, 60 (02) : 109 - 119
  • [47] Shortest Augmenting Paths for Online Matchings on Trees
    Bosek, Bartlomiej
    Leniowski, Dariusz
    Sankowski, Piotr
    Zych-Pawlewicz, Anna
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (02) : 337 - 348
  • [48] A tight bound for shortest augmenting paths on trees
    Bosek, Bartlomiej
    Leniowski, Dariusz
    Sankowski, Piotr
    Zych-Pawlewicz, Anna
    THEORETICAL COMPUTER SCIENCE, 2022, 901 : 45 - 61
  • [49] Shortest Augmenting Paths for Online Matchings on Trees
    Bartłomiej Bosek
    Dariusz Leniowski
    Piotr Sankowski
    Anna Zych-Pawlewicz
    Theory of Computing Systems, 2018, 62 : 337 - 348
  • [50] Average update times for fully-dynamic all-pairs shortest paths
    Friedrich, Tobias
    Hebbinghaus, Nils
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1751 - 1758