Significance of interplay between austenite stability and deformation mechanisms in governing three-stage work hardening behavior of phase-reversion induced nanograined/ultrafine-grained (NG/UFG) stainless steels with high strength-high ductility combination

被引:103
作者
Challa, V. S. A. [1 ]
Wan, X. L. [1 ]
Somani, M. C. [2 ]
Karjalainen, L. P. [2 ]
Misra, R. D. K. [1 ]
机构
[1] Univ Louisiana Lafayette, Ctr Struct & Funct Mat, Lab Excellence Adv Steel Res, Lafayette, LA 70504 USA
[2] Univ Oulu, Dept Mech Engn, Oulu 90014, Finland
关键词
Metastable austenitic stainless steel; Deformation mechanism; Austenite stability; Grain size; TRANSFORMATION-INDUCED PLASTICITY; SIZE; METALS; NANOCRYSTALLINE; MICROSTRUCTURES; FORMABILITY; MN; TI;
D O I
10.1016/j.scriptamat.2014.05.010
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the context of obtaining high strength-high ductility combination in nanograined/ultrafine-grained austenitic stainless steels, we underscore the dependence of grain structure and deformation mechanism. In high strength nanograined/ultrafine-grained steel, deformation twinning contributed to the excellent ductility and high strain hardening rate, while in the low strength coarse-grained steel, ductility and strain hardening ability was also good, but due to strain-induced martensite. The change in deformation mechanism with grain size is attributed to austenite stability-strain energy relationship. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:60 / 63
页数:4
相关论文
共 30 条
[1]   Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength high ductility combination transformation-induced plasticity steel [J].
Cai, Z. H. ;
Ding, H. ;
Xue, X. ;
Jiang, J. ;
Xin, Q. B. ;
Misra, R. D. K. .
SCRIPTA MATERIALIA, 2013, 68 (11) :865-868
[2]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[3]   State-of-the-knowledge on TWIP steel [J].
De Cooman, B. C. ;
Kwon, O. ;
Chin, K. -G. .
MATERIALS SCIENCE AND TECHNOLOGY, 2012, 28 (05) :513-527
[4]   Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn [J].
Ding, Hao ;
Ding, Hua ;
Song, Dan ;
Tang, Zhengyou ;
Yang, Ping .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (03) :868-873
[5]  
Frehn A., 2004, Steel Grips, V2, P447
[6]   Developing stable fine-grain microstructures by large strain deformation [J].
Humphreys, FJ ;
Prangnell, PB ;
Bowen, JR ;
Gholinia, A ;
Harris, C .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1756) :1663-1680
[7]   Martensitic transformation of individual grains in low-alloyed TRIP steels [J].
Jimenez-Melero, E. ;
van Dijk, N. H. ;
Zhao, L. ;
Sietsma, J. ;
Offerman, S. E. ;
Wright, J. P. ;
van der Zwaag, S. .
SCRIPTA MATERIALIA, 2007, 56 (05) :421-424
[8]   Strain hardening behavior of a Fe-18Mn-0.6C-1.5Al TWIP steel [J].
Jin, Jae-Eun ;
Lee, Young-Kook .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 527 (1-2) :157-161
[9]   The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel [J].
Kisko, A. ;
Misra, R. D. K. ;
Talonen, J. ;
Karjalainen, L. P. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 578 :408-416
[10]   Optimization of strength and ductility in nanocrystalline and ultrafine grained metals [J].
Koch, CC .
SCRIPTA MATERIALIA, 2003, 49 (07) :657-662