A PRIORI ESTIMATES FOR THE 3D COMPRESSIBLE FREE-BOUNDARY EULER EQUATIONS WITH SURFACE TENSION IN THE CASE OF A LIQUID

被引:7
作者
Disconzi, Marcelo M. [1 ]
Kukavica, Igor [2 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Univ Southern Calif, Dept Math, Los Angeles, CA 91107 USA
关键词
Compressible Euler; free-boundary; surface tension; liquid; regularity; GRAVITY WATER-WAVES; INITIAL VALUE-PROBLEM; CURRENT-VORTEX SHEETS; WELL-POSEDNESS; INCOMPRESSIBLE LIQUID; LINEARIZED MOTION; GLOBAL-SOLUTIONS; SPLASH SINGULARITIES; LOCAL EXISTENCE; SOBOLEV SPACES;
D O I
10.3934/eect.2019025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a priori estimates for the compressible free-boundary Euler equations with surface tension in three spatial dimensions in the case of a liquid. These are estimates for local existence in Lagrangian coordinates when the initial velocity and initial density belong to H-3, with an extra regularity condition on the moving boundary, thus lowering the regularity of the initial data. Our methods are direct and involve two key elements: the boundary regularity provided by the mean curvature and a new compressible Cauchy invariance.
引用
收藏
页码:503 / 542
页数:40
相关论文
共 101 条
[31]   WELL-POSEDNESS OF THE FREE-BOUNDARY COMPRESSIBLE 3-D EULER EQUATIONS WITH SURFACE TENSION AND THE ZERO SURFACE TENSION LIMIT [J].
Coutand, Daniel ;
Hole, Jason ;
Shkoller, Steve .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) :3690-3767
[32]   Well-Posedness in Smooth Function Spaces for the Moving-Boundary Three-Dimensional Compressible Euler Equations in Physical Vacuum [J].
Coutand, Daniel ;
Shkoller, Steve .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (02) :515-616
[33]   Well-Posedness in Smooth Function Spaces for Moving-Boundary 1-D Compressible Euler Equations in Physical Vacuum [J].
Coutand, Daniel ;
Shkoller, Steve .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (03) :328-366
[34]   A Priori Estimates for the Free-Boundary 3D Compressible Euler Equations in Physical Vacuum [J].
Coutand, Daniel ;
Lindblad, Hans ;
Shkoller, Steve .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (02) :559-587
[35]   AN EXISTENCE THEORY FOR WATER-WAVES AND THE BOUSSINESQ AND KORTEWEG-DEVRIES SCALING LIMITS [J].
CRAIG, W .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (08) :787-1003
[36]  
Craig W., ARXIV161208971MATHAP
[37]  
de Poyferre T., ARXIV161204103MATHAP
[38]   Global solutions of the gravity-capillary water-wave system in three dimensions [J].
Deng, Yu ;
Ionescu, Alexandru D. ;
Pausader, Benoit ;
Pusateri, Fabio .
ACTA MATHEMATICA, 2018, 219 (02) :213-402
[39]  
Disconzi M. M., ARXIV170800086MATHAP
[40]   ON A LINEAR PROBLEM ARISING IN DYNAMIC BOUNDARIES [J].
Disconzi, Marcelo .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (04) :627-644