Promising Ti3C2Tx MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity

被引:378
|
作者
Liang, Luyang [1 ]
Han, Gaojie [1 ]
Li, Yang [2 ]
Zhao, Biao [3 ]
Zhou, Bing [1 ]
Feng, Yuezhan [1 ]
Ma, Jianmin [4 ]
Wang, Yaming [1 ]
Zhang, Rui [2 ,3 ]
Liu, Chuntai [1 ]
机构
[1] Zhengzhou Univ, Natl Engn Res Ctr Adv Polymer Proc Technol, Minist Educ, Key Lab Adv Mat Proc & Mold, Zhengzhou 450002, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ Aeronaut, Sch Mat Sci & Engn, Henan Key Lab Aeronaut Mat & Applicat Technol, Zhengzhou 450046, Henan, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Minist Educ, Key Lab Micro Nanooptoelect Devices, Changsha 410022, Hunan, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Ti3C2Tx MXene; Ni nanochain; synergistic effect; electromagnetic wave absorption; electromagnetic interference shielding; HIGH MICROWAVE-ABSORPTION; REDUCED GRAPHENE OXIDE; FACILE PREPARATION; PERFORMANCE; COMPOSITES; NANOCOMPOSITES; MECHANISM; METAL; INTERCALATION; NANOPARTICLES;
D O I
10.1021/acsami.9b07294
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electromagnetic (EM) pollution affecting people's normal lives and health has attracted considerable attention in the current society. In this work, a promising EM wave absorption and shielding material, MXene/Ni hybrid, composed of one-dimensional Ni nanochains and two-dimensional Ti3C2Tx nanosheets (MXene), is successfully designed and developed. As expected, excellent EM wave absorption and shielding properties are obtained and controlled by only adjusting the MXene content in the hybrid. A minimum reflection loss of -49.9 dB is obtained only with a thickness of 1.75 mm at 11.9 GHz when the MXene content is 10 wt %. Upon further increasing the MXene content to 50 wt %, the optimal EM shielding effectiveness (SE) reaches 66.4 dB with an absorption effectiveness (SEA) of 59.9 dB. Mechanism analysis reveals that the excellent EM wave absorption and shielding performances of the hybrid are contributed to the synergistic effect of conductive MXene and magnetic Ni chains, by which, the dielectric properties and electromagnetic loss can be easily controlled to obtain appropriate impedance matching conditions and good EM wave dissipation ability. This work provides a simple but effective route to develop MXene-based EM wave absorption and shielding materials. A universal guideline for designing the absorbing and shielding materials for the future is also proposed.
引用
收藏
页码:25399 / 25409
页数:11
相关论文
共 50 条
  • [1] Research Progress of Electromagnetic Shielding Performance of MXene (Ti3C2Tx) Composites
    Han, Yue
    Jia, Ying
    Chen, Guangxue
    INNOVATIVE TECHNOLOGIES FOR PRINTING AND PACKAGING, 2023, 991 : 621 - 635
  • [2] Ti3C2Tx MXene/polyimide composites film with excellent mechanical properties and electromagnetic interference shielding properties
    Chu, Na
    Luo, Chunjia
    Chen, Xushuai
    Li, Liuxin
    Liang, Chaobo
    Chao, Min
    Yan, Luke
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 955
  • [3] Energy-efficient synthesis of Ti3C2Tx MXene for electromagnetic shielding
    Renuka, H.
    Chen, Morgan
    Kumar, Shwetha Sunil
    Yang, Long
    Lanagan, Michael T.
    Ghose, Sanjit
    Reeja-Jayan, B.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 185
  • [4] Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding
    Miao, Miao
    Liu, Ruiting
    Thaiboonrod, Sineenat
    Shi, Liyi
    Cao, Shaomei
    Zhang, Jianfeng
    Fang, Jianhui
    Feng, Xin
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (09) : 3120 - 3126
  • [5] Magnetic CoNi nanoparticles-decoated Ti3C2Tx MXene as excellent electromagnetic wave absorber
    Jin, Dan
    Chen, Hongsen
    Du, Yuguo
    Yang, Xiaolong
    Ren, Xiaohu
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 286
  • [6] Ultralight, Conductive Ti3C2Tx MXene/PEDOT:PSS Hybrid Aerogels for Electromagnetic Interference Shielding Dominated by the Absorption Mechanism
    Yang, Guo-Yu
    Wang, Shao-Zhe
    Sun, Hong-Tai
    Yao, Xu-Ming
    Li, Chuan-Bing
    Li, Yu-Jun
    Jiang, Jian-Jun
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) : 57521 - 57531
  • [7] Porous-multilayered Ti3C2Tx MXene hybrid carbon foams for tunable and efficient electromagnetic wave absorption
    Lu, Junyu
    Xu, Lei
    Xie, Cheng
    Wei, Qun
    Jiang, Qilin
    Yao, Guangsheng
    Han, Zhaohui
    CARBON, 2024, 229
  • [8] Preparation and Electromagnetic Shielding Properties of Ti3C2Tx MXene/Glass Fiber Composites
    Qin Wenfeng
    Fu Jiawei
    Liu Guochun
    Wang Xinyuan
    Li Yayun
    Fan Yuhang
    RARE METAL MATERIALS AND ENGINEERING, 2020, 49 (11) : 3896 - 3901
  • [9] Preparation and Electromagnetic Shielding Properties of Ti3C2Tx MXene/ Glass Fiber Composites
    Ti3C2Tx MXene负载玻璃纤维材料制备与电磁屏蔽性能
    Qin, Wenfeng (qwfgrh@126.com), 1600, Science Press (49): : 3896 - 3901
  • [10] Ti3C2Tx MXene/FeCo/Ni flakes composites with convenient preparation process for broadband electromagnetic shielding
    Wen, Yuntong
    Bian, Hao
    Ran, Yongpeng
    Xie, Yonghao
    You, Minmin
    Wen, Huimin
    Shi, Liyun
    Liu, Jingquan
    Lin, Zude
    MATERIALS TODAY COMMUNICATIONS, 2025, 43