Passivity Analysis for Fuzzy Time-Delay Systems Based on Fuzzy Lyapunov-Krasovskii Functionals

被引:0
|
作者
Zhang Baoyong [1 ]
Xia Jianwei [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
[2] Liaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R China
关键词
Fuzzy Lyapunov-Krasovskii Functionals; Fuzzy Systems; Linear Matrix Inequality (LMI); Passivity; Time-varying Delays; H-INFINITY CONTROL; VARYING DELAYS; DEPENDENT STABILIZATION; NEURAL-NETWORKS; PASSIFICATION; DESIGN; ROBUST; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the problem of passivity analysis for continuous-time Takagi-Sugeno (T-S) fuzzy systems with time-varying delays. By using different kinds of fuzzy Lyapunov-Krasovskii functionals, both delay-independent and delay-dependent conditions for the considered fuzzy system to be passive are presented in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness of the proposed passivity results.
引用
收藏
页码:4440 / 4445
页数:6
相关论文
共 50 条
  • [31] Stability Analysis of Systems with Time-Varying Delay via Improved Lyapunov-Krasovskii Functionals
    Long, Fei
    Zhang, Chuan-Ke
    Jiang, Lin
    He, Yong
    Wu, Min
    IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51 (04) : 2457 - 2466
  • [32] Stability Analysis of Systems With Time-Varying Delay via Improved Lyapunov-Krasovskii Functionals
    Long, Fei
    Zhang, Chuan-Ke
    Jiang, Lin
    He, Yong
    Wu, Min
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (04): : 2457 - 2466
  • [33] Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delay: A fuzzy Lyapunov-Krasovskii functional approach
    Wu, Huai-Ning
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2006, 36 (04): : 954 - 962
  • [34] Analysis of Lyapunov-Krasovskii stability for dynamical systems with time delay
    Zhang, Xiaoyan
    Sun, Jianqiao
    Ding, Qian
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2013, 47 (05): : 72 - 76
  • [35] Stabilising predictive control of non-linear time-delay systems using control Lyapunov-Krasovskii functionals
    Esfanjani, R. Mahboobi
    Nikravesh, S. K. Y.
    IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (10): : 1395 - 1400
  • [36] Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay
    Zhang, Xian-Ming
    Han, Qing-Long
    Ge, Xiaohua
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (01) : 77 - 85
  • [37] Lyapunov-Krasovskii functionals for scalar neutral type time delay equations
    Velazquez-Velazquez, J. E.
    Kharitonov, V. L.
    SYSTEMS & CONTROL LETTERS, 2009, 58 (01) : 17 - 25
  • [38] On robust stability for uncertain time-delay systems: A polyhedral Lyapunov-Krasovskii approach
    Guan, XP
    Chen, CL
    Shi, P
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2005, 24 (01) : 1 - 18
  • [39] On parameterized Lyapunov-Krasovskii functional techniques for investigating singular time-delay systems
    Liu Li-Li
    Peng Ji-Gen
    Wu Bao-Wei
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 703 - 708
  • [40] Wirtinger-like Lyapunov-Krasovskii functionals for discrete-time delay systems
    Seuret, Alexandre
    Fridman, Emilia
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (03) : 861 - 876