A CONVERGENT ADAPTIVE FINITE ELEMENT METHOD WITH OPTIMAL COMPLEXITY

被引:0
作者
Becker, Roland [1 ]
Mao, Shipeng [2 ]
Shi, Zhong-Ci [2 ]
机构
[1] Univ Pau, CNRS, UMR 5142, Lab Math Appl, F-64013 Pau, France
[2] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2008年 / 30卷
关键词
adaptive finite element method; a posteriori error estimator; convergence rate; optimal computational complexity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and analyze a simple adaptive finite element method for second order elliptic partial differential equations. The marking strategy depends on whether the data oscillation is sufficiently small compared to the error estimator in the current mesh. If the oscillation is small compared to the error estimator, we mark as many edges such that their contributions to the local estimator are at least a fixed proportion of the global error estimator (bulk criterion for the estimator). Otherwise, we reduce the oscillation by marking sufficiently many elements, such that the oscillations of the marked cells are at least a fixed proportion of the global oscillation (bulk criterion for the oscillation). This marking strategy guarantees a strict reduction of the error augmented by the oscillation term. Both convergence rates and optimal complexity of the adaptive finite element method are established, with an explicit expression of the constants in the estimates.
引用
收藏
页码:291 / 304
页数:14
相关论文
共 26 条
[1]  
AINSWORTH M., 2000, PURE APPL MATH
[2]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[3]  
Babuska I., 2001, NUMER MATH SCI COMP
[4]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[5]  
Binev P., 2002, SERDICA MATH J, V28, P391
[6]  
Carstensen C, 2006, NUMER MATH, V103, P251, DOI [10.1007/s00211-005-0658-6, 10.1007/S00211-005-0658-6]
[7]  
Carstensen C., 2000, East-West J. Numer. Math, V8, P153
[8]   Error reduction and convergence for an adaptive mixed finite element method [J].
Carstensen, Carsten ;
Hoppe, R. H. W. .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1033-1042
[9]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[10]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems