Analysis of Unidirectional Coupling in Topological Valley Photonic Crystal Waveguides

被引:36
作者
Ruan, Wen-Sheng [1 ]
He, Xin-Tao [1 ]
Zhao, Fu-Li [1 ]
Dong, Jian-Wen [1 ]
机构
[1] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Optical waveguides; Couplings; Photonic crystals; Optical coupling; Photonics; Stimulated emission; Optical polarization; photonic crystals; topological photonics; unidirectional coupling; valley degree of freedom;
D O I
10.1109/JLT.2020.3024696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Valley photonic crystal is a typical strategy of topological photonics with promising applications for novel integrated waveguides. The valley pseudospin provides an intrinsic paradigm to implement unidirectional coupling with robustly optical transport. But the key issue on the analysis of unidirectional coupling based on topological modes is lack of deep understanding on valley photonic crystals. In this work, we systematically study the mechanism and performance of unidirectional coupling between valley photonic crystal waveguides and chiral dipole emitters. Forming by two topologically-distinct valley photonic crystals, there are two types of valley-interface waveguides, i.e. bearded stack with glide-plane symmetry and zigzag stack with inversion symmetry. Analytical derivation shows that the Stokes parameters of topological eigenmodes can predict the directionality in the above two types of valley-interface waveguides, which is also confirmed by full-wave simulations. The strategy of bearded valley-interface waveguide can be easier to achieve high efficiency of unidirectional coupling than the zigzag case, and can relax the bias error of frequency and source location. It is also proved that the topological-protected unidirectional coupling supports robust transport against sharp-bending interface. Finally, we give a brief summary and perspective in the development of topological integrated photonics. This work gives a deterministic guidance on chiral light-matter interaction based on topological photonics, as well as shows the outlook of topological integrated photonics.
引用
收藏
页码:889 / 895
页数:7
相关论文
共 42 条
[1]   Theory and design of quantum light sources from quantum dots embedded in semiconductor-nanowire photonic-crystal systems [J].
Angelatos, Gerasimos ;
Hughes, Stephen .
PHYSICAL REVIEW B, 2014, 90 (20)
[2]   Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide [J].
Arcari, M. ;
Sollner, I. ;
Javadi, A. ;
Hansen, S. Lindskov ;
Mahmoodian, S. ;
Liu, J. ;
Thyrrestrup, H. ;
Lee, E. H. ;
Song, J. D. ;
Stobbe, S. ;
Lodahl, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[3]   Chiral quantum optics using a topological resonator [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Mittal, Sunil ;
Waks, Edo ;
Hafezi, Mohammad .
PHYSICAL REVIEW B, 2020, 101 (20)
[4]   A topological quantum optics interface [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Flower, Christopher ;
Cai, Tao ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Hafezi, Mohammad ;
Waks, Edo .
SCIENCE, 2018, 359 (6376) :666-668
[5]   Two-dimensionally confined topological edge states in photonic crystals [J].
Barik, Sabyasachi ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Waks, Edo ;
Hafezi, Mohammad .
NEW JOURNAL OF PHYSICS, 2016, 18
[6]   Quantum spin Hall effect of light [J].
Bliokh, Konstantin Y. ;
Smirnova, Daria ;
Nori, Franco .
SCIENCE, 2015, 348 (6242) :1448-1451
[7]  
Born M., 1999, Principles of Optics, V7th ed., P31
[8]   Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation [J].
Chen, Xiao-Dong ;
Zhao, Fu-Li ;
Chen, Min ;
Dong, Jian-Wen .
PHYSICAL REVIEW B, 2017, 96 (02)
[9]   Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer [J].
Coles, R. J. ;
Price, D. M. ;
Dixon, J. E. ;
Royall, B. ;
Clarke, E. ;
Kok, P. ;
Skolnick, M. S. ;
Fox, A. M. ;
Makhonin, M. N. .
NATURE COMMUNICATIONS, 2016, 7
[10]  
Dong JW, 2017, NAT MATER, V16, P298, DOI [10.1038/nmat4807, 10.1038/NMAT4807]