Petal-shaped poly(3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage

被引:61
作者
Zhou, Haihan [1 ]
Han, Gaoyi [1 ]
Fu, Dongying [1 ]
Chang, Yunzhen [1 ]
Xiao, Yaoming [1 ]
Zhai, Hua-Jin [1 ]
机构
[1] Shanxi Univ, Inst Mol Sci, Key Lab Chem Biol & Mol Engn, Educ Minist, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrochemical capacitors; Poly(3,4-ethylenedioxythiophene); Graphene oxide; Anionic surfactants; Areal capacitance; LARGE AREAL CAPACITANCE; ASYMMETRIC SUPERCAPACITORS; CONDUCTING POLYMERS; FACILE PREPARATION; CARBON; ELECTRODES; NANOCOMPOSITES; FILMS; SHEETS; POLYANILINE;
D O I
10.1016/j.jpowsour.2014.08.073
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile and one-step electrochemical codeposition method is introduced for incorporating graphene oxide (GO) into poly(3,4-ethylenedioxythiophene) (PEDOT) films in the presence of sodium dodecyl sulfate (SDS). The as-prepared PEDOT/SDS-GO composites are characterized using scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results show that PEDOT/SDS-GO composites possessing a unique petal-shaped morphology have been prepared successfully and exhibit an intercalated microstructure. With the purpose of electrochemical energy storage, the properties of electrochemical capacitance for composites have also been investigated with cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests. The electrochemical test results manifest the PEDOT/SDS-GO composites have superior capacitive behaviors and cyclic stability, and a high areal capacitance of 79.6 mF cm(-2) is achieved at 10 mV s(-1) cyclic voltammetry scan. Furthermore, the PEDOT/SDS-GO composites exhibit more superior capacitive performance than that of PEDOT/SDS, indicating the incorporation of GO into the composites effectively boosts the capacitive performance of PEDOT-based supercapacitor electrodes. We consider that this research further extends the application of GO and the composites prepared can be developed as the candidate for the fabrication of low-cost, high-performance supercapacitors for energy storage. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 210
页数:8
相关论文
共 54 条
[1]   Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor [J].
Alvi, Farah ;
Ram, Manoj K. ;
Basnayaka, Punya A. ;
Stefanakos, Elias ;
Goswami, Yogi ;
Kumar, Ashok .
ELECTROCHIMICA ACTA, 2011, 56 (25) :9406-9412
[2]   Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors [J].
Cao, Hailiang ;
Zhou, Xufeng ;
Zhang, Yiming ;
Chen, Liang ;
Liu, Zhaoping .
JOURNAL OF POWER SOURCES, 2013, 243 :715-720
[3]   Ideal Three-Dimensional Electrode Structures for Electrochemical Energy Storage [J].
Chabi, Sakineh ;
Peng, Chuang ;
Hu, Di ;
Zhu, Yanqiu .
ADVANCED MATERIALS, 2014, 26 (15) :2440-2445
[4]   Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor [J].
Chang, Hao-Hsiang ;
Chang, Chih-Kai ;
Tsai, Yu-Chen ;
Liao, Chien-Shiun .
CARBON, 2012, 50 (06) :2331-2336
[5]   Using hydroxylamine as a reducer to prepare N-doped graphene hydrogels used in high-performance energy storage [J].
Chang, Yunzhen ;
Han, Gaoyi ;
Yuan, Jinping ;
Fu, Dongying ;
Liu, Feifei ;
Li, Sidian .
JOURNAL OF POWER SOURCES, 2013, 238 :492-500
[6]   Graphene-modified carbon fiber mats used to improve the activity and stability of Pt catalyst for methanol electrochemical oxidation [J].
Chang, Yunzhen ;
Han, Gaoyi ;
Li, Miaoyu ;
Gao, Fei .
CARBON, 2011, 49 (15) :5158-5165
[7]   Synthesis and electrochemical capacitance of core-shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites [J].
Chen, Li ;
Yuan, Changzhou ;
Dou, Hui ;
Gao, Bo ;
Chen, Shengyao ;
Zhang, Xiaogang .
ELECTROCHIMICA ACTA, 2009, 54 (08) :2335-2341
[8]   RuO2/graphene hybrid material for high performance electrochemical capacitor [J].
Deng, Lingjuan ;
Wang, Jianfang ;
Zhu, Gang ;
Kang, Liping ;
Hao, Zhengping ;
Lei, Zhibin ;
Yang, Zupei ;
Liu, Zong-Huai .
JOURNAL OF POWER SOURCES, 2014, 248 :407-415
[9]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[10]  
Dudney NJ, 2008, ELECTROCHEM SOC INTE, V17, P44