HYPOELLIPTIC HEAT KERNELS ON INFINITE-DIMENSIONAL HEISENBERG GROUPS
被引:6
作者:
Driver, Bruce K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Driver, Bruce K.
[1
]
Eldredge, Nathaniel
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Math, Ithaca, NY 14853 USA
Univ No Colorado, Sch Math Sci, Greeley, CO 80639 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Eldredge, Nathaniel
[2
,3
]
Melcher, Tai
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Dept Math, Charlottesville, VA 22904 USAUniv Calif San Diego, Dept Math, La Jolla, CA 92093 USA
Melcher, Tai
[4
]
机构:
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[3] Univ No Colorado, Sch Math Sci, Greeley, CO 80639 USA
[4] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
We study the law of a hypoelliptic Brownian motion on an infinite-dimensional Heisenberg group based on an abstract Wiener space. We show that the endpoint distribution, which can be seen as a heat kernel measure, is absolutely continuous with respect to a certain product of Gaussian and Lebesgue measures, that the heat kernel is quasi-invariant under translation by the Cameron-Martin subgroup, and that the Radon-Nikodym derivative is Malliavin smooth.