HYPOELLIPTIC HEAT KERNELS ON INFINITE-DIMENSIONAL HEISENBERG GROUPS

被引:6
作者
Driver, Bruce K. [1 ]
Eldredge, Nathaniel [2 ,3 ]
Melcher, Tai [4 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[3] Univ No Colorado, Sch Math Sci, Greeley, CO 80639 USA
[4] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
Heisenberg group; hypoelliptic; heat kernel; smooth measures; QUASI-INVARIANCE;
D O I
10.1090/tran/6461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the law of a hypoelliptic Brownian motion on an infinite-dimensional Heisenberg group based on an abstract Wiener space. We show that the endpoint distribution, which can be seen as a heat kernel measure, is absolutely continuous with respect to a certain product of Gaussian and Lebesgue measures, that the heat kernel is quasi-invariant under translation by the Cameron-Martin subgroup, and that the Radon-Nikodym derivative is Malliavin smooth.
引用
收藏
页码:989 / 1022
页数:34
相关论文
共 45 条
  • [31] Free symmetric and unitary pairs in division rings infinite-dimensional over their centers
    Vitor O. Ferreira
    Jairo Z. Gonçalves
    Israel Journal of Mathematics, 2015, 210 : 297 - 321
  • [32] SUBGRADIENT ESTIMATE AND LIOUVILLE-TYPE THEOREM FOR THE CR HEAT EQUATION ON HEISENBERG GROUPS
    Chang, Shu-Cheng
    Tie, Jingzhi
    Wu, Chin-Tung
    ASIAN JOURNAL OF MATHEMATICS, 2010, 14 (01) : 41 - 72
  • [33] Holomorphic functions and subelliptic heat kernels over Lie groups
    Driver, Bruce K.
    Gross, Leonard
    Saloff-Coste, Laurent
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (05) : 941 - 978
  • [34] Hamilton-Jacobi theory and the heat kernel on Heisenberg groups
    Beals, R
    Gaveau, B
    Greiner, PC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (07): : 633 - 689
  • [35] Large time estimates for heat kernels in nilpotent Lie groups
    Melzi, C
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (01): : 71 - 86
  • [36] Regularity of fractional heat semigroups associated with Schrodinger operators on Heisenberg groups
    Sun, Chuanhong
    Li, Pengtao
    Lou, Zengjian
    FORUM MATHEMATICUM, 2024, 36 (06) : 1437 - 1481
  • [37] Logarithmic Sobolev Inequalities for Infinite Dimensional Hörmander Type Generators on the Heisenberg Group
    J. Inglis
    I. Papageorgiou
    Potential Analysis, 2009, 31 : 79 - 102
  • [38] Heat kernel analysis on semi-infinite Lie groups
    Melcher, Tai
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (11) : 3552 - 3592
  • [39] Heat kernels and Hardy's uncertainty principle on H-type groups
    Fuhu, Zhu
    Qiaohua, Yang
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 171 - 178
  • [40] Heat kernels and theory of Hardy spaces associated to Schrodinger operators on stratified groups
    Bui, The Anh
    Hong, Qing
    Hu, Guorong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 353 : 147 - 224