HYPOELLIPTIC HEAT KERNELS ON INFINITE-DIMENSIONAL HEISENBERG GROUPS

被引:6
|
作者
Driver, Bruce K. [1 ]
Eldredge, Nathaniel [2 ,3 ]
Melcher, Tai [4 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[3] Univ No Colorado, Sch Math Sci, Greeley, CO 80639 USA
[4] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
Heisenberg group; hypoelliptic; heat kernel; smooth measures; QUASI-INVARIANCE;
D O I
10.1090/tran/6461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the law of a hypoelliptic Brownian motion on an infinite-dimensional Heisenberg group based on an abstract Wiener space. We show that the endpoint distribution, which can be seen as a heat kernel measure, is absolutely continuous with respect to a certain product of Gaussian and Lebesgue measures, that the heat kernel is quasi-invariant under translation by the Cameron-Martin subgroup, and that the Radon-Nikodym derivative is Malliavin smooth.
引用
收藏
页码:989 / 1022
页数:34
相关论文
共 45 条