Two integral operators in Clifford analysis

被引:27
作者
Gong, Mang [2 ]
Leong, Ieng Tak [1 ]
Qian, Tao [1 ]
机构
[1] Univ Macau, Dept Math, Fac Sci & Technol, Taipa, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Segal-Bargmann space; Monogenic Fock space; Clifford analysis;
D O I
10.1016/j.jmaa.2008.12.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Segal-Bargmann space F-2(C-n) and monogenic Fock space M-2(Rn+1) are introduced first. Then, with the help of exponential functions in Clifford analysis, two integral operators are defined to connect F-2(C-n) and M-2(Rn+1) together. The corresponding integral properties are Studied in detail. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 444
页数:10
相关论文
共 11 条
[1]  
Brackx F., 1982, Clifford analysis
[2]  
Cnops J, 1999, MATH METHOD APPL SCI, V22, P353, DOI 10.1002/(SICI)1099-1476(19990310)22:4<353::AID-MMA44>3.0.CO
[3]  
2-#
[4]  
Delanghe R., 1992, Clifford Algebra and Spinor-Valued Functions
[5]  
GERALD B, 1989, ANN MATH STUD, V122
[6]  
GONG Y, 2008, P S HYP AN, P135
[7]  
JOHN E, 1991, CLIFFORD ALGEBRAS DI
[8]  
Li C., 1994, REV MAT IBEROAM, V10, P665, DOI DOI 10.4171/RMI/164
[9]  
McIntosh A, 1996, CLIFFORD ALGEBRAS IN ANALYSIS AND RELATED TOPICS, P33
[10]  
Sommen F., 1986, Scientific Papers of the College of Arts and Sciences, University of Tokyo, V36, P15