Quantitative Analysis of NAD Synthesis-Breakdown Fluxes

被引:382
作者
Liu, Ling [1 ,2 ,3 ]
Su, Xiaoyang [1 ,4 ]
Quinn, William J., III [5 ,6 ]
Hui, Sheng [1 ]
Krukenberg, Kristin [7 ,8 ]
Frederick, David W. [5 ,6 ]
Redpath, Philip [9 ]
Zhan, Le [10 ]
Chellappa, Karthikeyani [5 ,6 ]
White, Eileen [10 ]
Migaud, Marie [9 ,11 ]
Mitchison, Timothy J. [7 ]
Baur, Joseph A. [5 ,6 ]
Rabinowitz, Joshua D. [1 ,2 ,3 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
[3] Univ Penn, Diabet Res Ctr, Philadelphia, PA 19104 USA
[4] Rutgers State Univ, Robert Wood Johnson Med Sch, Dept Med, New Brunswick, NJ 08904 USA
[5] Univ Penn, Perelman Sch Med, Dept Physiol, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Inst Diabet Obes & Metab, Philadelphia, PA 19104 USA
[7] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
[8] Shire, Lexington, MA 02421 USA
[9] Queens Univ Belfast, Sch Pharm, Belfast BT9 7BL, Antrim, North Ireland
[10] Rutgers Canc Inst New Jersey, New Brunswick, NJ 08903 USA
[11] Univ S Alabama, Mitchell Canc Inst, Mobile, AL 36604 USA
基金
英国生物技术与生命科学研究理事会;
关键词
NICOTINAMIDE ADENINE-DINUCLEOTIDE; POLY(ADP-RIBOSE) POLYMERASE-1; CELL-DEATH; ACID NICOTINAMIDE; METABOLIC FLUXES; SKELETAL-MUSCLE; BASE-EXCHANGE; BREAST-CANCER; MECHANISM; RIBOSIDE;
D O I
10.1016/j.cmet.2018.03.018
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The redox cofactor nicotinamide adenine dinucleotide (NAD) plays a central role in metabolism and is a substrate for signaling enzymes including polyADP-ribose-polymerases (PARPs) and sirtuins. NAD concentration falls during aging, which has triggered intense interest in strategies to boost NAD levels. A limitation in understanding NAD metabolism has been reliance on concentration measurements. Here, we present isotope-tracer methods for NAD flux quantitation. In cell lines, NAD was made from nicotinamide and consumed largely by PARPs and sirtuins. In vivo, NAD was made from tryptophan selectively in the liver, which then excreted nicotinamide. NAD fluxes varied widely across tissues, with high flux in the small intestine and spleen and low flux in the skeletal muscle. Intravenous administration of nicotinamide riboside or mononucleotide delivered intact molecules to multiple tissues, but the same agents given orally were metabolized to nicotinamide in the liver. Thus, flux analysis can reveal tissue-specific NAD metabolism.
引用
收藏
页码:1067 / +
页数:19
相关论文
共 60 条
  • [1] [Anonymous], REC DIET ALL
  • [2] Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements
    Antoniewicz, Maciek R.
    Kelleher, Joanne K.
    Stephanopoulos, Gregory
    [J]. METABOLIC ENGINEERING, 2006, 8 (04) : 324 - 337
  • [3] Comparative characterisation of poly(ADP-ribose) polymerase-1 from two mammalian species with different life span
    Beneke, S
    Alvarez-Gonzalez, R
    Bürkle, A
    [J]. EXPERIMENTAL GERONTOLOGY, 2000, 35 (08) : 989 - 1002
  • [4] Nicotinic acid nicotinamide and nicotinamide riboside:: A molecular evaluation of NAD+ precursor vitamins in human nutrition
    Bogan, Katrina L.
    Brenner, Charles
    [J]. ANNUAL REVIEW OF NUTRITION, 2008, 28 : 115 - 130
  • [5] Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds
    Bonkowski, Michael S.
    Sinclair, David A.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2016, 17 (11) : 679 - 690
  • [6] CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism
    Camacho-Pereira, Juliana
    Tarrago, Mariana G.
    Chini, Claudia C. S.
    Nin, Veronica
    Escande, Carlos
    Warner, Gina M.
    Puranik, Amrutesh S.
    Schoon, Renee A.
    Reid, Joel M.
    Galina, Antonio
    Chini, Eduardo N.
    [J]. CELL METABOLISM, 2016, 23 (06) : 1127 - 1139
  • [7] The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity
    Canto, Caries
    Houtkooper, Riekelt H.
    Pirinen, Eija
    Youn, Dou Y.
    Oosterveer, Maaike H.
    Cen, Yana
    Fernandez-Marcos, Pablo J.
    Yamamoto, Hiroyasu
    Andreux, Penelope A.
    Cettour-Rose, Philippe
    Gademann, Karl
    Rinsch, Chris
    Schoonjans, Kristina
    Sauve, Anthony A.
    Auwerx, Johan
    [J]. CELL METABOLISM, 2012, 15 (06) : 838 - 847
  • [8] Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility
    Chiang, Shian-Huey
    Harrington, W. Wallace
    Luo, Guizhen
    Milliken, Naphtali O.
    Ulrich, John C.
    Chen, Jing
    Rajpal, Deepak K.
    Qian, Ying
    Carpenter, Tiffany
    Murray, Rusty
    Geske, Robert S.
    Stimpson, Stephen A.
    Kramer, Henning F.
    Haffner, Curt D.
    Becherer, J. David
    Preugschat, Frank
    Billin, Andrew N.
    [J]. PLOS ONE, 2015, 10 (08):
  • [9] NAD and the aging process: Role in life, death and everything in between
    Chini, Claudia C. S.
    Tarrago, Mariana G.
    Chini, Eduardo N.
    [J]. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2017, 455 (0C) : 62 - 74
  • [10] Targeting of NAD Metabolism in Pancreatic Cancer Cells: Potential Novel Therapy for Pancreatic Tumors
    Chini, Claudia C. S.
    Guerrico, Anatilde M. Gonzalez
    Nin, Veronica
    Camacho-Pereira, Juliana
    Escande, Carlos
    Barbosa, Maria Thereza
    Chini, Eduardo N.
    [J]. CLINICAL CANCER RESEARCH, 2014, 20 (01) : 120 - 130