A PRP type method for systems of monotone equations

被引:97
作者
Cheng, Wanyou [1 ]
机构
[1] Dongguan Univ Technol, Coll Comp, Dongguan 523000, Peoples R China
关键词
Monotone equations; Hyperplane projection method; Global convergence; SCALE NONLINEAR-SYSTEMS; QUASI-NEWTON METHODS; LINE SEARCH; CONVERGENCE;
D O I
10.1016/j.mcm.2009.04.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose an algorithm for solving systems of monotone equations. The method is a combination of the well-known PRP method and the hyperplane projection method. We prove that the proposed method is globally convergent if the equation is monotone and Lipschitz continuous without any differentiability requirement on the equation. Preliminary numerical results show that the proposed method is promising. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 20 条
[1]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[2]   CONVERGENCE THEORY OF NONLINEAR NEWTON-KRYLOV ALGORITHMS [J].
BROWN, PN ;
SAAD, Y .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :297-330
[3]  
BROYDEN CG, 1965, MATH COMPUT, V19, P557
[4]   A nonmonotone hybrid method for nonlinear systems [J].
Gasparo, MG .
OPTIMIZATION METHODS & SOFTWARE, 2000, 13 (02) :79-94
[5]   THE GLOBAL CONVERGENCE OF BROYDEN-LIKE METHODS WITH A SUITABLE LINE SEARCH [J].
GRIEWANK, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :75-92
[6]   A NONMONOTONE LINE SEARCH TECHNIQUE FOR NEWTON METHOD [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :707-716
[7]  
Hager William W, 2006, Pacific Journal of Optimization, P35, DOI DOI 10.1080/10556780500137041
[8]  
Iusem NA., 1997, OPTIMIZATION, V41, P257, DOI DOI 10.1080/02331939708844339
[9]   Nonmonotone spectral methods for large-scale nonlinear systems [J].
La Cruz, W ;
Raydan, M .
OPTIMIZATION METHODS & SOFTWARE, 2003, 18 (05) :583-599
[10]   Spectral residual method without gradient information for solving large-scale nonlinear systems of equations [J].
La Cruz, William ;
Martinez, Jose Mario ;
Raydan, Marcos .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1429-1448