A Time-Oscillating Hartree-Type Schrodinger Equation

被引:0
|
作者
Chen, Xu [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; SCATTERING;
D O I
10.1155/2014/950132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time-oscillating Hartree-type Schrodinger equation lu(t) + Delta u + theta(omega t) (|x|(-y) * |u|(2) where.. is a periodic function. For themean value I(theta) of theta, we show that the solution.... converges to the solution of iU(t)f + Delta U + I(theta) (|x|(-y) * |u|(2) for their local well-posedness and global well-posedness.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Inhomogeneous boundary value problem for Hartree-type equation
    Ma, Li
    Cao, Pei
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [22] The Nonlinear Schrodinger Equations with Combined Nonlinearities of Power-Type and Hartree-Type
    Fang, Daoyuan
    Han, Zheng
    Dai, Jialing
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (03) : 435 - 474
  • [23] Symmetry operators of a Hartree-type equation with quadratic potential
    A. L. Lisok
    A. Yu. Trifonov
    A. V. Shapovalov
    Siberian Mathematical Journal, 2005, 46 : 119 - 132
  • [24] Normalized solutions to nonlinear Schrodinger equations with competing Hartree-type nonlinearities
    Bhimani, Divyang
    Gou, Tianxiang
    Hajaiej, Hichem
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (07) : 2543 - 2580
  • [25] The evolution operator of the Hartree-type equation with a quadratic potential
    Lisok, AL
    Trifonov, AY
    Shapovalov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (16): : 4535 - 4556
  • [26] Symmetry operators of a Hartree-type equation with quadratic potential
    Lisok, AL
    Trifonov, AY
    Shapovalov, AV
    SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (01) : 119 - 132
  • [27] T-MAPPING REPRESENTATION FOR SOLUTION OF HARTREE-TYPE EQUATION
    MASLOV, VP
    CHEBOTAREV, AM
    DOKLADY AKADEMII NAUK SSSR, 1975, 222 (05): : 1037 - 1040
  • [28] GLOBAL WELL-POSEDNESS FOR THE FOURTH-ORDER HARTREE-TYPE SCHRoDINGER EQUATION WITH CAUCHY DATA IN Lp
    Xie, Jin
    Wang, Deng
    Yang, Han
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2024, 14 (02) : 533 - 550
  • [29] ON ASYMPTOTIC PROPERTIES OF SEMI-RELATIVISTIC HARTREE EQUATION WITH COMBINED HARTREE-TYPE NONLINEARITIES
    Wang, Qingxuan
    Feng, Binhua
    Li, Yuan
    Shi, Qihong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (04) : 1225 - 1247
  • [30] Green's function of a Hartree-type equation with a quadratic potential
    Lisok, AL
    Trifonov, AY
    Shapovalov, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 141 (02) : 1528 - 1541