A Time-Oscillating Hartree-Type Schrodinger Equation

被引:0
|
作者
Chen, Xu [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; SCATTERING;
D O I
10.1155/2014/950132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the time-oscillating Hartree-type Schrodinger equation lu(t) + Delta u + theta(omega t) (|x|(-y) * |u|(2) where.. is a periodic function. For themean value I(theta) of theta, we show that the solution.... converges to the solution of iU(t)f + Delta U + I(theta) (|x|(-y) * |u|(2) for their local well-posedness and global well-posedness.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A Schrodinger equation with time-oscillating nonlinearity
    Cazenave, Thierry
    Scialom, Marcia
    REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (02): : 321 - 339
  • [2] A Schrodinger equation with time-oscillating critical nonlinearity
    Fang, Daoyuan
    Han, Zheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) : 4698 - 4708
  • [3] A random dispersion Schrodinger equation with time-oscillating nonlinearity
    Fang, Daoyuan
    Zhang, Linzi
    Zhang, Ting
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 403 - 414
  • [4] A Random Schrodinger Equation with Time-Oscillating Nonlinearity and Linear Dissipation/Gain
    Jian, Hui
    Liu, Bin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 265 - 286
  • [5] A 2D Schrodinger equation with time-oscillating exponential nonlinearity
    Bensouilah, A.
    Draouil, D.
    Majdoub, M.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 17 (04) : 307 - 327
  • [6] On the semirelativistic Hartree-type equation
    Cho, Yonggeun
    Ozawa, Tohru
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) : 1060 - 1074
  • [7] Bohmian trajectories of the time-oscillating Schrodinger equations
    Li, Dandan
    Duan, Jinqiao
    Lin, Li
    Zhang, Ao
    CHAOS, 2021, 31 (10)
  • [8] Sign-changing solutions to critical Schrodinger equation with Hartree-type nonlinearity
    Zhang, Cui
    Li, Fuyi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [9] Sharp criteria for the nonlinear Schrodinger equation with combined nonlinearities of power-type and Hartree-type
    Leng, Lihui
    Li, Xiaoguang
    Zheng, Pengshe
    APPLICABLE ANALYSIS, 2017, 96 (16) : 2846 - 2851
  • [10] On nonlinear fractional Schrodinger equations with Hartree-type nonlinearity
    Lu, Dengfeng
    Xu, Guojin
    APPLICABLE ANALYSIS, 2018, 97 (02) : 255 - 273