An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations

被引:66
作者
Verwer, JG [1 ]
Sommeijer, BP [1 ]
机构
[1] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
关键词
parabolic PDEs; stiff diffusion-reaction equations; Runge-Kutta-Chebyshev; IMEX; VODPK; GMRES;
D O I
10.1137/S1064827503429168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An implicit-explicit (IMEX) extension of the explicit Runge-Kutta-Chebyshev (RKC) scheme designed for parabolic PDEs is proposed for diffusion-reaction problems with severely stiff reaction terms. The IMEX scheme treats these reaction terms implicitly and diffusion terms explicitly. Within the setting of linear stability theory, the new IMEX scheme is unconditionally stable for reaction terms having a Jacobian matrix with a real spectrum. For diffusion terms the stability characteristics remain unchanged. A numerical comparison for a stiff, nonlinear radiation-diffusion problem between an RKC solver, an IMEX-RKC solver, and the popular implicit BDF solver VODPK using the Krylov solver GMRES illustrates the excellent performance of the new scheme.
引用
收藏
页码:1824 / 1835
页数:12
相关论文
共 16 条
[1]   Fourth order Chebyshev methods with recurrence relation [J].
Abdulle, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) :2041-2054
[2]   Second order Chebyshev methods based on orthogonal polynomials [J].
Abdulle, A ;
Medovikov, AA .
NUMERISCHE MATHEMATIK, 2001, 90 (01) :1-18
[3]  
[Anonymous], 2000, COMP MATH MATH PHYS+
[4]  
BAKKER M, 1971, 62 MATH CTR
[5]   Preconditioning strategies or fully implicit radiation diffusion with material-energy transfer [J].
Brown, PN ;
Woodward, CS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02) :499-516
[6]   REDUCED STORAGE MATRIX-METHODS IN STIFF ODE SYSTEMS [J].
BROWN, PN ;
HINDMARSH, AC .
APPLIED MATHEMATICS AND COMPUTATION, 1989, 31 :40-91
[7]  
BYRNE GD, 1992, COMPUTATIONAL ORDINA, P323
[8]  
Hundsdorfer W., 2003, SPRINGER SER COMPUT, V33
[9]  
Lebedev V.I., 1994, NUMER METHODS APPL, P45
[10]   Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion [J].
Mousseau, VA ;
Knoll, DA ;
Rider, WJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (02) :743-765