Nonlocal cross-diffusion systems for multi-species populations and networks

被引:19
作者
Juengel, Ansgar [1 ]
Portisch, Stefan [1 ]
Zurek, Antoine [2 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Univ Technol Compiegne, LMAC, F-60200 Compiegne, France
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
Cross diffusion; Neural network dynamics; Entropy method; Localization limit; Global existence of solutions; Weak-strong uniqueness; WEAK-STRONG UNIQUENESS; MEAN-FIELD ANALYSIS; ENTROPIC STRUCTURE; WELL-POSEDNESS; MODEL; AGGREGATION; LAW;
D O I
10.1016/j.na.2022.112800
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlocal cross-diffusion systems on the torus, arising in population dynamics and neuroscience, are analyzed. The global existence of weak solutions, the weak-strong uniqueness, and the localization limit are proved. The kernels are assumed to be in detailed balance. The proofs are based on entropy estimates coming from Shannon-type and Rao-type entropies, while the weak-strong uniqueness result follows from the relative entropy method. The existence and uniqueness theorems hold for nondifferentiable, only integrable kernels. The associated local cross-diffusion system, derived in the localization limit, is also discussed. (C) 2022 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:26
相关论文
共 48 条
[1]  
Alasio L., ARXIV210514037, V2021
[2]  
Andreu-Vaillo F., 2010, AM MATH SOC
[3]  
[Anonymous], 2010, Partial Differential Equations
[4]  
[Anonymous], 2016, SpringerBriefs in Mathematics
[5]  
[Anonymous], 1993, Teubner-Texte zur Mathematik
[6]   Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons [J].
Baladron, Javier ;
Fasoli, Diego ;
Faugeras, Olivier ;
Touboul, Jonathan .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2012, 2 (01) :1-50
[7]   Uniqueness of strong solutions and weak-strong stability in a system of cross-diffusion equations [J].
Berendsen, Judith ;
Burger, Martin ;
Ehrlacher, Virginie ;
Pietschmann, Jan-Frederik .
JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (02) :459-483
[8]   On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion [J].
Berendsen, Judith ;
Burger, Martin ;
Pietschmann, Jan-Frederik .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 :10-39
[9]   Lp Theory for the Multidimensional Aggregation Equation [J].
Bertozzi, Andrea L. ;
Laurent, Thomas ;
Rosado, Jesus .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) :45-83
[10]   CROSS DIFFUSION PREVENTING BLOW-UP IN THE TWO-DIMENSIONAL KELLER-SEGEL MODEL (vol 43, pg 997, 2011) [J].
Braukhoff, Marcel ;
Chen, Xiuqing ;
Juengel, Ansgar .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) :2198-2200