Representations of the Schrodinger algebra and Appell systems

被引:26
作者
Feinsilver, P [1 ]
Kocik, J
Schott, R
机构
[1] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[2] Univ Nancy 1, LORIA, F-54506 Vandoeuvre Les Nancy, France
[3] Univ Nancy 1, IECN, F-54506 Vandoeuvre Les Nancy, France
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2004年 / 52卷 / 04期
关键词
Lie algebras; Schrodinger algebra; Heisenberg-Weyl algebra; Leibniz function; quantum probability; Appell systems;
D O I
10.1002/prop.200310124
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the structure of the Schrodinger algebra. Two constructions are given that yield the physical realization via general methods starting from the abstract Lie algebra. Representations are found on a Fock space with basis given by a canonical Appell system. Generalized coherent states are used in the construction of the Hilbert space of functions on which certain commuting elements act as self-adjoint operators. This yields a probabilistic interpretation of these operators as random variables. An interesting feature is how the semidirect product structure of the Lie algebra is reflected in the probability density function. A Leibniz function and orthogonal basis for the Hilbert space are found. Then certain evolution equations connected with canonical Appell systems on this algebra are shown.
引用
收藏
页码:343 / 359
页数:17
相关论文
共 15 条
  • [1] NONCENTRAL LIMIT-THEOREMS AND APPELL POLYNOMIALS
    AVRAM, F
    TAQQU, MS
    [J]. ANNALS OF PROBABILITY, 1987, 15 (02) : 767 - 775
  • [2] (1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
    Ballesteros, A
    Herranz, FJ
    Parashar, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (17): : 3445 - 3465
  • [3] Barut A., 1980, THEORY GROUP REPRESE
  • [4] CONFORMAL COVARIANCE AND THE PROBABILITY INTERPRETATION OF WAVE-EQUATIONS
    BARUT, AO
    XU, BW
    [J]. PHYSICS LETTERS A, 1981, 82 (05) : 218 - 220
  • [5] ON EQUATIONS OF MOTION ON COMPACT HERMITIAN SYMMETRICAL SPACES
    BERCEANU, S
    GHEORGHE, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (03) : 998 - 1007
  • [6] OPTICAL GROUP AND ITS SUBGROUPS
    BURDET, G
    PATERA, J
    PERRIN, M
    WINTERNITZ, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (08) : 1758 - 1780
  • [7] Dobrev V. K., 1997, Reports on Mathematical Physics, V39, P201, DOI 10.1016/S0034-4877(97)88001-9
  • [8] Berezin quantization of the Schrodinger algebra
    Feinsilver, P
    Kocik, J
    Schott, R
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) : 57 - 71
  • [9] On solving evolution equations on Lie groups
    Feinsilver, P
    Franz, U
    Schott, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (14): : 2777 - 2798
  • [10] Feinsilver P., 1996, ALGEBRAIC STRUCTURES, VIII