Representations of the Schrodinger algebra and Appell systems

被引:26
作者
Feinsilver, P [1 ]
Kocik, J
Schott, R
机构
[1] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[2] Univ Nancy 1, LORIA, F-54506 Vandoeuvre Les Nancy, France
[3] Univ Nancy 1, IECN, F-54506 Vandoeuvre Les Nancy, France
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2004年 / 52卷 / 04期
关键词
Lie algebras; Schrodinger algebra; Heisenberg-Weyl algebra; Leibniz function; quantum probability; Appell systems;
D O I
10.1002/prop.200310124
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the structure of the Schrodinger algebra. Two constructions are given that yield the physical realization via general methods starting from the abstract Lie algebra. Representations are found on a Fock space with basis given by a canonical Appell system. Generalized coherent states are used in the construction of the Hilbert space of functions on which certain commuting elements act as self-adjoint operators. This yields a probabilistic interpretation of these operators as random variables. An interesting feature is how the semidirect product structure of the Lie algebra is reflected in the probability density function. A Leibniz function and orthogonal basis for the Hilbert space are found. Then certain evolution equations connected with canonical Appell systems on this algebra are shown.
引用
收藏
页码:343 / 359
页数:17
相关论文
共 15 条
[1]   NONCENTRAL LIMIT-THEOREMS AND APPELL POLYNOMIALS [J].
AVRAM, F ;
TAQQU, MS .
ANNALS OF PROBABILITY, 1987, 15 (02) :767-775
[2]   (1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups [J].
Ballesteros, A ;
Herranz, FJ ;
Parashar, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (17) :3445-3465
[3]  
Barut A., 1980, THEORY GROUP REPRESE
[4]   CONFORMAL COVARIANCE AND THE PROBABILITY INTERPRETATION OF WAVE-EQUATIONS [J].
BARUT, AO ;
XU, BW .
PHYSICS LETTERS A, 1981, 82 (05) :218-220
[5]   ON EQUATIONS OF MOTION ON COMPACT HERMITIAN SYMMETRICAL SPACES [J].
BERCEANU, S ;
GHEORGHE, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (03) :998-1007
[6]   OPTICAL GROUP AND ITS SUBGROUPS [J].
BURDET, G ;
PATERA, J ;
PERRIN, M ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (08) :1758-1780
[7]  
Dobrev V. K., 1997, Reports on Mathematical Physics, V39, P201, DOI 10.1016/S0034-4877(97)88001-9
[8]   Berezin quantization of the Schrodinger algebra [J].
Feinsilver, P ;
Kocik, J ;
Schott, R .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) :57-71
[9]   On solving evolution equations on Lie groups [J].
Feinsilver, P ;
Franz, U ;
Schott, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (14) :2777-2798
[10]  
Feinsilver P., 1996, ALGEBRAIC STRUCTURES, VIII